0 A 35 700 B 2885 C 5155 3 S 9 6371 km 30-65 km 2885 km 2270 km 1216 km
QUESTION 44 From the diagram the outer core (#5) is a; A. liquid B. solid C. gas D. plasma

Answers

Answer 1

The answer to the question is liquid.

The earth has various layers, and the outer core is the second layer from the earth's center, located between the mantle and the earth's inner core. The outer core is a liquid layer made up of molten iron and nickel, and it is responsible for producing the earth's magnetic field.

According to scientists, the earth's outer core is a liquid layer made up of molten iron and nickel, and it is responsible for producing the earth's magnetic field.

The outer core is about 2,300 kilometers thick and is located between the earth's mantle and the inner core. The temperature in the outer core ranges from 4,000 to 5,000 degrees Celsius, and the pressure is about 1.3 million times that of the earth's surface.

The outer core is liquid due to the high temperatures and pressure that exist there. The liquid outer core moves as it produces the earth's magnetic field, which is essential to life on earth.

Learn more about pressure

brainly.com/question/30673967

#SPJ11


Related Questions

if 20% of the mass of a 70 kg student's body is fat (a typical value), what is the total volume of fat in his body?

Answers

The total volume of fat in the student's body is approximately 15.56 liters.

To calculate the total volume of fat in the student's body, we need to find the mass of fat first, and then use the density of triglycerides to determine the volume.

Given:

Mass of the student's body: 70 kg

Percentage of body mass that is fat: 20%

Calculate the mass of fat in the student's body:

Mass of fat = (20/100) x 70 kg

Calculate the volume of fat using the density:

Volume of fat = Mass of fat / Density of fat

Note: Density is given as 900 kg/m³.

Now, let's perform the calculations:

Mass of fat = (20/100) x 70 kg = 14 kg

Volume of fat = Mass of fat / Density of fat = 14 kg / 900 kg/m³

Converting the mass to grams (1 kg = 1000 g):

Volume of fat = (14 kg x 1000 g/kg) / 900 kg/m³ = 15.56 L

Therefore, the total volume of fat in the student's body is approximately 15.56 liters.

The complete question is:

Fat cells in humans are composed almost entirely of pure triglycerides with an average density of about 900 kg/m³. If 20% of the mass of a 70 kg student's body is fat (a typical value), what is the total volume of the fat in his body?

To know more about fat follow the link:

https://brainly.com/question/8073542

#SPJ4

what is the net force acting on a 5.3 kg book that is being pushed
at a constant velocity of 0.87 m/s on a flat tabletop?

Answers

The net force acting on the book is zero N.

When an object is moving at a constant velocity, the net force acting on it is zero. This is because the object is in equilibrium, where the forces acting on it are balanced and there is no acceleration.

In this case, the book is being pushed with a constant velocity of 0.87 m/s on a flat tabletop, which means that the forces acting on the book are balanced.

According to Newton's first law of motion, an object will remain at rest or continue to move at a constant velocity unless acted upon by an external force.

Since the book is moving at a constant velocity, it means that the force applied to push the book is equal in magnitude and opposite in direction to the forces of friction and air resistance acting on the book.

These forces cancel out each other, resulting in a net force of zero.

Therefore, the net force acting on the 5.3 kg book is zero N.

To know more about "Velocity" refer here:

https://brainly.com/question/31479424#

#SPJ11

A student analyzes data of the motion of a planet as it orbits a star that is in deep space. The orbit of the planet is considered to be stable and does not change over time. The student claims, "The only experimentally measurable external force exerted on the planet is the force due to gravity from the star. " Is the student’s claim supported by the evidence? What reasoning either supports or contradicts the student’s claim? Yes. Other external forces are exerted on the planet, but they are of negligible magnitude

Answers

The student's claim that "The only experimentally measurable external force exerted on the planet is the force due to gravity from the star" is partly supported by the evidence. The reason being that the planet's orbit is considered to be stable and does not change over time.

The planet's motion and orbit are affected by gravity. The gravitational force on the planet is the only force in deep space that affects its motion and orbit. However, there are other forces that can act on the planet such as atmospheric drag, magnetic fields, radiation pressure, and other gravitational forces from nearby planets or moons, which are not significant in deep space.

These forces can cause a change in the planet's motion and orbit. However, these external forces are of negligible magnitude compared to the gravitational force due to the star. Hence, the student's claim is partly supported by the evidence that the only experimentally measurable external force exerted on the planet is the force due to gravity from the star.

To know more about planet's orbit, refer

https://brainly.com/question/28430876

#SPJ11

Compare and contrast continuous, emission, and absorption spectra including what they look like and how they are produced.
What type of spectrum (continuous, emission, or absorption) would you expect to see if you observed our Sun from an Earth-based telescope and why? What type of spectrum would you expect to see from our Sun if you observed the Sun from a satellite orbiting the Earth and why? How would that spectrum change, if at all, if the Sun was twice as hot as it is now? Why?
How do we use light to determine the distances to different objects in space, including close stars, more distant stars still within the Milky Way, and both near galaxies and far galaxies?

Answers

Continuous spectra form a continuous band of colors without any breaks, while emission spectra consist of bright lines against a dark background, and absorption spectra show dark lines on a continuous background.

Continuous spectra are produced when an object emits light at all wavelengths, resulting in a smooth, uninterrupted distribution of colors. Emission spectra, on the other hand, are created when electrons in an atom are excited and then return to lower energy levels, emitting light at specific wavelengths. These emitted wavelengths appear as bright lines against a dark background.

Absorption spectra occur when light passes through a cooler gas and certain wavelengths are absorbed by the gas, resulting in dark lines on a continuous background. These dark lines correspond to the specific wavelengths that were absorbed by the gas.

When observing the Sun from an Earth-based telescope, a continuous spectrum would be expected. This is because the Sun's hot, dense core produces a continuous range of wavelengths as a result of thermal radiation.

If the Sun were observed from a satellite orbiting the Earth, an absorption spectrum would be observed. This is because the satellite would be situated above Earth's atmosphere, which contains cooler gases that can absorb specific wavelengths of light from the Sun, leading to the appearance of dark lines on the spectrum.

If the Sun were twice as hot as its current state, the spectrum would show a greater intensity across all wavelengths, but the overall pattern of a continuous spectrum would remain the same. The additional energy would cause a shift towards shorter wavelengths, resulting in a bluer spectrum.

To determine distances to different objects in space, astronomers use various methods based on light. For close stars, the parallax method is employed, which measures the apparent shift of a star's position as the Earth orbits the Sun. For more distant stars within the Milky Way, astronomers use the period-luminosity relationship of certain pulsating stars called Cepheids. To determine distances to near and far galaxies, astronomers use the redshift of light caused by the expansion of the universe, known as Hubble's Law.

Learn more about Continuous spectra here:

https://brainly.com/question/31170027

#SPJ11

An EM wave has a magnetic field strength of 5.00×10−4[T]. What
is its electric field strength when travelling in a medium with
n=1.50? Show solution
A. 1.00×105[V/m]
B. 1.50×105[V/m]
C. 3.00×101

Answers

The electric field strength is 1.50x [tex]10^{5}[/tex] [V/m] (Option B) when traveling in a medium with n=1.50.

To find the electric field strength of an electromagnetic wave in a medium, we can use the following relationship:

E = c * B / n

where:

E is the electric field strength

c is the speed of light in vacuum (approximately 3.00 x [tex]10^8[/tex] m/s)

B is the magnetic field strength

n is the refractive index of the medium

B = 5.00 x [tex]10^{-4}[/tex] T

n = 1.50

Substituting these values into the equation, we have:

E = (3.00 x  [tex]10^{8}[/tex] m/s) * (5.00 x [tex]10^{-4}[/tex] T) / 1.50

Calculating this expression, we get:

E = (3.00 x [tex]10^{8}[/tex] m/s) * (5.00 x [tex]10^{-4}[/tex] T) / 1.50

 = (1.50 x [tex]10^{5}[/tex]) V/m

Therefore, the electric field strength of the electromagnetic wave in the medium with n=1.50 is 1.50 x [tex]10^{5}[/tex] V/m.

The correct answer is:

B. 1.50× [tex]10^{5}[/tex] [V/m]

learn more about "electromagnetic ":- https://brainly.com/question/13874687

#SPJ11

24. What does it mean to say that dV is an exact differential? fav = √₂-V₁ Sav - 7-20 7-23 25. Write down the differentials for the thermodynamic potentials. From these derive the Maxwell relati

Answers

The differentials for the thermodynamic potentials. From these derive the Maxwell relation is in the explanation part.

When we claim that dV is an exact differential, we are referring to a total differential whose derivative can be written as a scalar function of the variables involved. In other words, dV can be represented as follows if V is a function of many variables:

dV = (∂V/∂x)dx + (∂V/∂y)dy + (∂V/∂z)dz

The differentials for the thermodynamic potentials can be written as follows:

dU = TdS - PdV (Internal Energy)

dH = TdS + VdP (Enthalpy)

dF = -SdT - PdV (Helmholtz Free Energy)

dG = -SdT + VdP (Gibbs Free Energy)

These equations explain how variations in entropy (S), temperature (T), volume (V), and pressure (P) affect various thermodynamic potentials.

By obtaining the proper partial derivatives and equating the associated terms, the Maxwell relations can be obtained from these differentials.

Thus, the particular Maxwell relations rely on the variables and the thermodynamic potentials under consideration.

For more details regarding thermodynamic potentials, visit:

https://brainly.com/question/13592831

#SPJ4

Captain Kirk launched into space last year aboard a rocket. The maximum velocity v reached by the rocket occurred at an altitude of h. (a) How long did it take for the rocket to reach that altitude? (b) Will the rocket make it to space (an altitude of 100 km)?

Answers

a) The answer to this part of the question cannot be determined.

b) The rocket will not make it to space.

Captain Kirk launched into space last year aboard a rocket. The maximum velocity v reached by the rocket occurred at an altitude of h. Let's find out the answers to the given questions.

(a) The time, t required to reach an altitude h is given by the formula; t = √(2h/g)where g is the acceleration due to gravity. Substituting h = maximum height attained by the rocket, we get the time required to reach that altitude.t = √(2h/g)Where, h = maximum altitude reached by the rocket at maximum velocity v.g = 9.8 m/s²Now, maximum velocity of the rocket (v) is not given, we cannot find out the maximum altitude (h). Thus, the answer to this part of the question cannot be determined.

(b) To determine whether the rocket will make it to space (an altitude of 100 km), we need to find the maximum altitude, h attained by the rocket at its maximum velocity, v. A rocket attains a height of 100 km when the maximum altitude reached by the rocket is greater than 100 km or 100,000 meters. Let's assume that the maximum altitude attained by the rocket is H. The time required for a rocket to attain a maximum height H is given by the formula; t = √(2H/g)On integrating, we get; H = (1/2)gt²Hence, the rocket will make it to space if the maximum height (H) attained by the rocket is greater than or equal to 100,000 meters or 100 km. If H is less than 100,000 meters, the rocket will not make it to space.

Learn more about velocity:https://brainly.com/question/80295

#SPJ11

X-rays of wavelength 9. 74×10?2 nm are directed at an unknown crystal. The second diffraction maximum is recorded when the X-rays are directed at an angle of 21. 9 ? relative to the crystal surface.

What is the spacing between crystal planes? In m

Answers

The spacing between crystal planes is 2.78 × 10⁻¹⁰ m. The Bragg's Law can be used to find the spacing between the crystal planes.

Bragg's Law states that when X-rays of wavelength λ fall on the crystal, the maxima of diffraction will be observed when the path difference between the two rays is an integral multiple of the wavelength (2d sinθ = nλ, where n=1, 2, 3.....).Where d is the spacing between the crystal planes θ is the angle between the incident X-rays and the crystal planes

The maximum diffraction was recorded at 21.9°, thus,

θ = 21.9°λ

= 9.74×10⁻² nm

= 9.74×10⁻¹¹ m

From Bragg's law: 2d sinθ

= nλ2d

= nλ/sinθ

Substitute the values in the equation, we have:

2d = (1)(9.74 × 10⁻¹¹)/sin(21.9°)d

= (9.74 × 10⁻¹¹)/(2 × sin(21.9°))d

= 2.78 × 10⁻¹⁰ m

This is the spacing between the crystal planes.

The spacing between crystal planes is 2.78 × 10⁻¹⁰ m.

To know more about Bragg's Law, refer

https://brainly.com/question/29855408

#SPJ11

earths mass is aproximately 81 times the mass of the moon. if earth exerts a gravtational force of magnitude f on the moon, the magnitude of the gravitational force of the moon on earth is

Answers

The magnitude of the gravitational force of the Moon on Earth is also 1.99 x 10^20 N. The gravitational force of the moon on Earth.

The magnitude of the gravitational force of the moon on Earth is the same as the magnitude of the gravitational force of Earth on the moon, as stated by Newton's third law. However, let's look at how the gravitational force between these two celestial objects is calculated.

In general, the gravitational force between two objects can be calculated using the formula: F = (Gm1m2)/r^2 where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers of mass.

The mass of the Earth is approximately 81 times greater than that of the Moon. The mass of the Earth is about 5.97 x 10^24 kg, while the mass of the Moon is approximately 7.34 x 10^22 kg.

As a result, we may use these values to calculate the magnitude of the gravitational force exerted by Earth on the Moon.

Assume that the distance between the centers of mass of Earth and Moon is 384,400 km.

Furthermore, G has a value of 6.67 x 10^-11 Nm^2/kg^2.

Using the formula: F = (Gm1m2)/r^2

we get: F = (6.67 x 10^-11 Nm^2/kg^2)(5.97 x 10^24 kg)(7.34 x 10^22 kg)/(384,400,000 m)^2

= 1.99 x 10^20 N

The magnitude of the gravitational force of Earth on the Moon is about 1.99 x 10^20 N.

Again, due to Newton's third law, the magnitude of the gravitational force of the Moon on Earth is also 1.99 x 10^20 N.

Therefore, this is our final answer.

To learn more about gravitational visit;

https://brainly.com/question/3009841

#SPJ11

The detail observable using a probe is limited by its wavelength. Calculate the energy (in GeV) of a y-ray photon that has a wavelength of 110-17 m, small enough to detect details abou this energy is

Answers

The energy of a y-ray photon with a wavelength of 10^(-17) m is approximately 1.24 GeV. This calculation is based on the relationship between energy, wavelength, and the fundamental constants of Planck's constant and the speed of light.

The energy (E) of a photon can be calculated using the equation:

E = h * c / λ

Where:

E is the energy of the photon

h is Planck's constant (approximately 6.63 x 10^(-34) J·s or 4.14 x 10^(-15) eV·s)

c is the speed of light (approximately 3 x 10^8 m/s)

λ is the wavelength of the photon

Converting the given wavelength to meters, we have λ = 10^(-17) m.

Substituting the values into the equation, we get:

E = (6.63 x 10^(-34) J·s * 3 x 10^8 m/s) / (10^(-17) m)

Simplifying the expression, we have:

E = 1.989 x 10^(-9) J

To convert the energy to GeV, we divide by the conversion factor:

1 GeV = 1.602 x 10^(-19) J

E (in GeV) = (1.989 x 10^(-9) J) / (1.602 x 10^(-19) J/GeV)

E (in GeV) ≈ 1.24 GeV

The energy of a y-ray photon with a wavelength of 10^(-17) m is approximately 1.24 GeV. This calculation is based on the relationship between energy, wavelength, and the fundamental constants of Planck's constant and the speed of light. The energy of a photon is directly proportional to its frequency or inversely proportional to its wavelength. Understanding the energy of photons is crucial in various fields such as particle physics, astrophysics, and medical imaging, as it helps in determining the behavior and interactions of electromagnetic radiation.

To know more about wavelength ,visit:

https://brainly.com/question/10750459

#SPJ11

A runner of mass 61.0 kg runs around the edge of a large horizontal turntable mounted on a vertical, frictionless axis through its center, i.e. a sturdy merry-go-round constructed of strong but lightweight materials and with a running track along its rim. His velocity relative to the Earth has magnitude of 3.60 m/s. The turntable is rotating in the opposite direction with an angular velocity having a magnitude of 0.190 rad s relative to the Earth. The radius of the turntable is 2.90 m, and its moment of inertia about the axis of rotation is 655.0 kg . mºAs viewed from above, the runner is running in the counterclockwise direction, i.e. the positive angular direction.

As measured by an observer stationary on the Earth, what is the magnitude of the runner's momentum, and what is the runner's angular momentum about the turntable axis? Treat the runner as a point mass. Give your answers as an ordered pair, with momentum first, followed by a comma, followed by angular momentum. Give the magnitude of the runner's momentum. Give the component of angular momentum about the central axis, with counterclockwise positive.

Find the final angular velocity of the system if the runner comes to rest relative to the turntable. Treat the runner as a point mass.

Answers

The final angular velocity of the system when the runner comes to rest relative to the turntable is 0.190 rad/s.

Given: Mass of the runner, m = 61.0 kg

Velocity of the runner relative to the earth,

V = 3.60 m/s

Radius of the turntable, R = 2.90 m.

Angular velocity of the turntable, ω = 0.190 rad/s.

Moment of inertia of the turntable, I = 655.0 kg.m²

To find: (a) the magnitude of the runner's momentum and runner's angular momentum about the turntable axis, and (b) the final angular velocity of the system if the runner comes to rest relative to the turntable.

Magnitude of the runner's momentum:

The momentum of the runner is given by p = mv

Where, m is the mass of the runner and v is the velocity of the runner.

p = (61.0 kg)(3.60 m/s)

p = 219.60 kg.m/s

Angular momentum about the turntable axis:

The angular momentum of the runner is given byL = Iω

Where, I is the moment of inertia of the turntable and ω is the angular velocity of the turntable.

L = (655.0 kg.m²)(0.190 rad/s)L

= 124.45 kg.m²/s(a)

Therefore, the magnitude of the runner's momentum is 219.60 kg.m/s and the runner's angular momentum about the turntable axis is 124.45 kg.m²/s.

(b) When the runner comes to rest relative to the turntable, the system's initial angular momentum L1 is equal to the final angular momentum L2. That is, L1 = L2

Initial angular momentum, L1 = Iω1

Final angular momentum, L2 = Iω2

Where, ω1 is the initial angular velocity and ω2 is the final angular velocity of the system.

The initial angular momentum of the system can be found as:

L1 = (655.0 kg.m²)(0.190 rad/s)

L1 = 124.45 kg.m²/s

When the runner comes to rest, the final angular velocity of the system is given by

ω2 = (L1/I)

ω2 = (124.45 kg.m²/s)/(655.0 kg.m²)

ω2 = 0.190 rad/s

Therefore, the final angular velocity of the system when the runner comes to rest relative to the turntable is 0.190 rad/s.

To learn more about Velocity visit;

https://brainly.com/question/30559316

#SPJ11

Q1: A current of 20A flows east through 50cm wire. A magnitude of 4T is directed into the page. What is the magnitude of the magnetic force acting on the wire? North West East South

Answers

A current of 20A flows east through 50cm wire. A magnitude of 4T is directed into the page the magnitude of the magnetic force acting on the wire is 40 N.The direction of the force depends on the orientation of the wire and the magnetic field, as well as the direction of the current.

To find the magnitude of the magnetic force acting on the wire, we can use the formula for the magnetic force on a current-carrying wire in a magnetic field:

F = B * I * L * sin(theta)

where F is the magnetic force, B is the magnetic field strength, I is the current, L is the length of the wire, and theta is the angle between the wire and the magnetic field.

Given:

I = 20 A (current)

L = 50 cm = 0.5 m (length of the wire)

B = 4 T (magnetic field strength)

Since the current flows east, the angle theta between the wire and the magnetic field is 90 degrees (perpendicular).

Plugging in the values into the formula:

F = 4 T * 20 A * 0.5 m * sin(90°)

Simplifying the expression:

F = 4 T * 20 A * 0.5 m * 1

F = 40 N

Therefore, the magnitude of the magnetic force acting on the wire is 40 N.

As for the direction, the question does not provide enough information to determine the specific direction of the force (North, West, East, or South). The direction of the force depends on the orientation of the wire and the magnetic field, as well as the direction of the current.

To learn more about  current visit: https://brainly.com/question/1100341

#SPJ11

Selected astronomical data for Jupiter's moon Europa is given in the table. Moon Orbital Radius (km) Orbital Period (days) Europa 6. 70 x 105 3. 55 From these data, calculate the mass of Jupiter (in kg). Suppose that X has a lognormal distribution with parameters θ=10 and ϕ2=16Determine the following:(a) P(X 1500)(b) Value exceeded with probability 0. 7

Answers

The value of X that is exceeded with probability 0.7 is 14326.24. Kepler's third law can be used to calculate the mass of Jupiter in this problem.

Mass of Jupiter = (4π² / G) (R³ / T²) where G is the gravitational constant, R is the orbital radius of Europa, and T is the orbital period of Europa. Putting in the numbers, we have:

Mass of Jupiter = (4π² / 6.6743 x 10⁻¹¹) (6.70 x 105)³ / (3.55 x 24 x 3600)²

= 1.90 x 10²⁷ kg

(a) X has a lognormal distribution with parameters θ = 10 and ϕ₂ = 16.

The probability of X being less than or equal to 1500 can be calculated as follows:

P(X ≤ 1500) = P(Z ≤ (ln(1500) - 10) / √16),

where Z is a standard normal random variable. Using a table or a calculator, we find that P(Z ≤ -0.625) = 0.266.

Therefore, P(X ≤ 1500) = 0.266.

(b) The value of X that is exceeded with probability 0.7 is denoted by X0.7.

This value can be found by solving the equation P(X > X0.7) = 0.7, where P(X > X0.7) is the complementary cumulative distribution function (CCDF) of X.

The CCDF of X can be calculated using the formula

P(X > x) = 1 - Φ((ln(x) - θ) / √ϕ₂), where Φ is the standard normal cumulative distribution function.

Solving for X0.7, we have:

0.7 = 1 - Φ((ln(X0.7) - 10) / √16)Φ((ln(X0.7) - 10) / √16)

= 0.3

Using a table or a calculator, we find that Φ(-0.524) = 0.299.

Therefore, ln(X0.7) = -0.524 √16 + 10

= 9.587 X0.7

= e9.587

= 14326.24.

Therefore, the value of X that is exceeded with probability 0.7 is 14326.24.

To know more about probability, refer

https://brainly.com/question/24756209

#SPJ11

Question 9 of 10 < View Policies Current Attempt in Progress A girl is sledding down a slope that is inclined at 30° with respect to the horizontal. The wind is aiding the motion by providing a steady force of 190 N that is parallel to the motion of the sled. The combined mass of the girl and the sled is 52.7 kg, and the coefficient of kinetic friction between the snow and the runners of the sled is 0.275. How much time is required for the sled to travel down a 112-m slope, starting from rest? Units eTextbook and Media Save for Later Attempts: 0 of 5 used

Answers

The time required for the sled to travel down a 112-m slope, starting from rest, is approximately 10.46 seconds.  Newton's laws of motion allows us to analyze and predict the behavior of objects in various scenarios, such as sledding down slopes.

To determine the time required for the sled to travel down the slope, we need to consider the forces acting on the sled and apply Newton's second law of motion.

Given data:

Angle of inclination (θ) = 30°

Force provided by the wind (F_wind) = 190 N

Combined mass of the girl and the sled (m) = 52.7 kg

Coefficient of kinetic friction (μ_k) = 0.275

Distance traveled down the slope (d) = 112 m

Step 1: Calculate the gravitational force component parallel to the slope.

The gravitational force component parallel to the slope is given by:

F_parallel = m * g * sin(θ)

Step 2: Calculate the net force acting on the sled.

The net force is the vector sum of the force provided by the wind and the gravitational force component parallel to the slope:

F_net = F_wind - F_parallel

Step 3: Calculate the force of kinetic friction.

The force of kinetic friction is given by:

F_friction = μ_k * m * g * cos(θ)

Step 4: Calculate the net force accounting for friction.

The net force accounting for friction is:

F_net_friction = F_net - F_friction

Step 5: Calculate the acceleration.

The acceleration of the sled can be calculated using Newton's second law:

a = F_net_friction / m

Step 6: Calculate the time of travel.

The time required for the sled to travel down the slope can be calculated using the equation of motion:

d = 0.5 * a * t^2

Rearranging the equation and solving for time (t), we find:

t = sqrt((2 * d) / a)

Substituting the given values and calculating the expression, we find:

t ≈ 10.46 seconds

The time required for the sled to travel down a 112-m slope, starting from rest, is approximately 10.46 seconds. This calculation takes into account the forces acting on the sled, including the force provided by the wind, the gravitational force component parallel to the slope, and the force of kinetic friction. Understanding the motion of objects on inclined planes and applying Newton's laws of motion allows us to analyze and predict the behavior of objects in various scenarios, such as sledding down slopes.

To know more about motion ,visit:

https://brainly.com/question/26083484

#SPJ11

Assume this process is 10% efficient, how much work is done by the gas expanding into the 1, 130, 000 # 10 = W / 11, 300,000'1, 300,000 W = 113, 00OJ 20. Assuming the atmospheric pressure to be constant at 101,325 Pa, by what amount does the volume of the balloon change? Fb = PV+g 10132 5 = 997 x 1/+ 9.81 V= 10162 m 13...

Answers

Assuming the atmospheric pressure to be constant, the volume of the balloon changes by approximately 101.79 m³.

How to calculate volume?

To find the change in volume of the balloon, use the ideal gas law equation:

PV = nRT

Given:

Initial pressure (P₁) = 101,325 Pa

Final pressure (P₂) = 997 Pa

Initial volume (V₁) = 1 m³

Final volume (V₂) = ?

Gas constant (R) = 8.314 J/(mol·K)

Temperature (T) remains constant

Rearrange the ideal gas law equation to solve for the final volume (V₂):

V₂ = (P₁ × V₁) / P₂

Substituting the values:

V₂ = (101,325 Pa × 1 m³) / 997 Pa

V₂ ≈ 101.79 m³

Therefore, the volume of the balloon changes by approximately 101.79 m³.

Find out more on change in volume here: https://brainly.com/question/29504549

#SPJ1

Solve the following two equations for the (positive) time,
t, and the position, x. Assume SI units.
x = 3.00t2
and
x = 12.0t + 57.0
(a) the (positive) time, t
___s
(b) the position, x
___m

Answers

The positive time, t, is approximately 4.21 seconds, and the position, x, is approximately 75.8 meters.

We are given two equations:

1. x = 3.00t²

2. x = 12.0t + 57.0

Set the two equations equal to each other:

3.00t² = 12.0t + 57.0

Rearrange the equation to bring all terms to one side:

3.00t² - 12.0t - 57.0 = 0

Solve the quadratic equation. We can use the quadratic formula:

t = (-b ± √(b² - 4ac)) / (2a)

Here, a = 3.00, b = -12.0, and c = -57.0.

Using the quadratic formula, we find:

t = (-(-12.0) ± √((-12.0)² - 4(3.00)(-57.0))) / (2(3.00))

 = (12.0 ± √(144.0 + 684.0)) / 6.00

 = (12.0 ± √828.0) / 6.00

Step 4: Calculate the positive time, t:

t = (12.0 + √828.0) / 6.00 ≈ 4.21 seconds

Step 5: Substitute the value of t into one of the original equations to find the position, x:

Using x = 3.00t²:

x = 3.00(4.21)²

 = 3.00(17.68)

 ≈ 53.04 meters

Therefore, the positive time, t, is approximately 4.21 seconds, and the position, x, is approximately 75.8 meters.

To know more about quadratic equation refer here:

https://brainly.com/question/28096706#

#SPJ11

what fraction of the initial kinetic energy of the bullet remains as kinetic energy after the collision?

Answers

The fraction of the initial kinetic energy of the bullet that remains as kinetic energy after the collision is zero.

The fraction of the initial kinetic energy of the bullet that remains as kinetic energy after the collision  calculated by using the formula: (KEf/KEi) = (v/ u)²

where KEf is the final kinetic energy

KEi is the initial kinetic energy

v is the final velocity

u is the initial velocity.

The bullet is stopped by the target, so the final velocity is zero.

Therefore, the formula can be simplified to:(KEf/KEi) = (0/ u)²

or KEf = 0

The final kinetic energy of the bullet is zero because it is stopped by the target.

Therefore, all of the initial kinetic energy of the bullet is lost in the collision.

The fraction of the initial kinetic energy of the bullet that remains as kinetic energy after the collision is zero.

Learn more about kinetic energy

brainly.com/question/999862

#SPJ11

Image Diagram A car is following another car along a
straight road. The first car has a rear window tilted at
45° to the horizontal. Draw a ray diagram showing the
position of the Sun that would cause sunlight to
reflect into the eyes of the driver of the second car.

Answers

The blue car in front travels at a slower speed compared to the red car behind. Eventually, the red car would have to overtake the blue car because it is much faster. First, let's compute the time it takes before the red car catches up to the blue car. The solution is as follows:

30 m = (60 km/h - 50 km/h)*(1000 m/1 km)*(1 h/3,600 s)*(t)

t = 10.8 seconds

After 10.8 seconds, the red car catches up to the blue car. With this amount of time, the blue car would still cover additional distance. That would be equal to:

Distance = Speed*time

Distance = (50 km/h)*(1 h/3600 s)*(10.8 s)

Distance = 0.15 km

Perception distance is the distance traveled by  the vehicle when the driver perceive the hazard situation.

Learn more about distance on:

https://brainly.com/question/13034462

#SPJ1

Consider the two points A(-4, -1) and B(2, 7) in the xy-plane. Distances are given in centimeters.

The line of action of a 75 N force goes through the linear segment AB.

Determine the magnitude of the moment of the force (in N*cm) about the origin (0, 0).

Answer should be 195

Answers

Consider the two points A(-4, -1) and B(2, 7) in the xy-plane. Distances are given in centimeters. the magnitude of the moment of the 75 N force about the origin is 150 N.

To determine the magnitude of the moment of the 75 N force about the origin (0, 0), we can use the cross product between the position vector from the origin to point B and the force vector.

First, let’s find the position vectors of points A and B with respect to the origin:

Vector OA = (x₁, y₁) = (-4, -1)

Vector OB = (x₂, y₂) = (2, 7)

Next, we can calculate the cross product between the position vector OB and the force vector F:

Moment = |OB × F|

      = |(x₂, y₂) × (0, 0, F)|

      = |(0, 0, (x₂ * F) – (y₂ * 0))|

      = |(0, 0, 2 * F)|

      = 2F

Substituting the given force magnitude of 75 N:

Moment = 2F

      = 2 * 75 N

      = 150 N

Therefore, the magnitude of the moment of the 75 N force about the origin is 150 N. The unit for moments is N*cm, so to convert from Newtons to Newtons*cm, we multiply by 100:

Magnitude of the moment = 150 N * 100 cm

                     = 15,000 N*cm

                     = 15,000 cm

However, the answer given in the question is 195 N*cm, which does not match the calculated value. It is possible that there might be an error in the calculations or a discrepancy in the given values.

Learn more about force here:

https://brainly.com/question/30507236

#SPJ11

Need correct option urgently.
1. What radius of the central sheave is necessary to make the fall time exactly 4 s, if the same pendulum with weights at R=70 mm is used? o 385.349 mm o 35452.072 mm o 188.287 mm o 2457.108 mm o 1760

Answers

Radius of the central sheave is option is a) 385.349 mm to make the fall time exactly at 4 s.

Time taken = t = 4s

Radius of the pendulum = 70 mm

Let us find the relation between time, radius and length of the pendulum:

Relation between time period and length of the pendulum is given by,

T = 2π( l/g)

T = 2π( l/9.8)

T² = 4π² (l/g)

T² = 4π² (l/9.8)

4 = 4π² (l/9.8)

l = 4×9.8/π²

l = 1.273 m

From the relation we can see that time period is independent of the mass of the bob.

Now let us find the radius of the central sheave

Radius of the central sheave can be calculated as:

R= (l² -r²)/2h

where,

h = 2r

Let R be the radius of the central sheave

Then we have,

R= (l² -r²)/4r

Substituting the values we get,

R = (1.273² - (0.07)²)/4(0.07)

R = 0.385349 m

Therefore the radius of the central sheave is 385.349 mm or 0.385349 m.

Hence, the correct option is a) 385.349 mm.

Learn more about time:

https://brainly.com/question/29813582

#SPJ11

DUE IN 30 MINS, THANK YOU
How much is the energy of a single photon of the blue
light with a frequency of 7.5 x 1014 Hz?
Group of answer choices
4.97 x 1015 J
8.84 x 10-49 J
4.97 x 10-19 J
1.13 x 1048

Answers

The energy of a single photon of the blue light with a frequency of 7.5 x 10¹⁴ Hz is 4.97 x 10⁻¹⁹ J.

The energy (E) of a photon can be calculated using the equation:

E = h * f

where:

E = energy of the photon

h = Planck's constant (approximately 6.626 x 10⁻³⁴ J s)

f = frequency of the light wave

E = (6.626 x 10⁻³⁴ J s) * (7.5 x 10¹⁴ Hz)

E = 4.97 x 10⁻¹⁹ J

Therefore, the energy of a single photon of blue light with a frequency of 7.5 x 10¹⁴ Hz is approximately 4.97 x 10⁻¹⁹ J.

To know more about photon here

https://brainly.com/question/29415147

#SPJ4

water poursed slowly from a teapot spout can double back under the spout for a considerable distance

Answers

Siphoning is a technique for drawing liquid from a higher elevation to a lower one, typically from a container of some sort to the ground, with the aid of an intermediary mechanism. The fundamental principles underlying siphoning are the gravitational pull of the Earth and the absence of any air pockets inside the tubing.

The phenomenon in which water pours slowly from a teapot spout and can double back under the spout for a considerable distance is known as siphoning. Siphoning is essential in a variety of situations, including draining liquids from a full tank and transporting fluids between containers that are at different heights. Siphoning may be performed using hoses, pipes, or tubes, as well as other types of tubing.

Learn more about  gravitational pull here ;

https://brainly.com/question/6839945

#SPJ11


Describe the important steps in the thermal history of the
universe. Include at least five stages and/or major
transitions.

Answers

The following are the key steps in the thermal history of the universe:

1. Inflation: This occurred 10^(-32) seconds after the Big Bang and is believed to have caused a rapid expansion of the universe, resulting in a cooling phase.

2. The era of radiation domination: This was the age of the universe when the majority of the energy in the universe was in the form of radiation.

3. The era of matter domination: After this age, the universe became mostly dominated by matter.

4. Recombination: The universe cooled sufficiently after 380,000 years, allowing electrons to combine with nuclei, forming atoms for the first time.

5. The period of nucleosynthesis: The time period after 3-20 minutes where the universe was hot and dense enough to form light atomic nuclei, such as helium and deuterium.

6. Formation of galaxies: Gravity pulls matter together, causing galaxies to form in the universe.

7. Era of Dark Energy Domination: At around 9 billion years, the era of dark energy domination began, which is the present age of the universe.

learn more about universe here

https://brainly.com/question/28365362

#SPJ11

A cubical gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces. No other charges are nearby.)

(1) Over how many of the cube's faces is the electric field non zero?

6

0

2

4

(i) Through how many of the cube's faces is the electric flux non zero?

4

0

2

06

Answers

the electric flux is non-zero through two faces of the cube's faces.

(1) The electric field is non-zero on two faces of the cube.

(ii) The electric flux is non-zero through two faces of the cube.

A cubical Gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces. No other charges are nearby.

The electric field is non-zero on two opposite faces of a cubical Gaussian surface that surrounds a long, straight, charged filament passing through the surface. The electric field, being a vector field, has non-zero components in all three dimensions. It flows perpendicularly to the filament at the two faces of the cubical Gaussian surface and will be parallel to the two other faces.The flux lines of the electric field will only cross two opposite faces of the cube. Therefore, the electric flux is non-zero through two faces of the cube's faces.

(1) The electric field is non-zero on two faces of the cube.

(ii) The electric flux is non-zero through two faces of the cube.

learn more about electric field here

https://brainly.com/question/19878202

#SPJ11

The electric field in units of N/C at a distance of 8.1 cm from an isolated point particle with a charge of 2 X10–9 C is: 2.The electric field due to a length of wire through a Gaussian surface in the form of a cylinder of radius 1 cm and height 6 mm is 4x102 N/C. What is the charge (in units of pC) of the wire inside the Gaussian surface?

Answers

The charge of the wire can be calculated as;q = ΦEϵ0 = (4x10² N/C)(8.85x10^-12 C²/N m²) = 3.54x10^-9 C = 3.54 pCIn units of pC, the charge will be 12.57 pC (picoCoulombs)

The electric field in units of N/C at a distance of 8.1 cm from an isolated point particle with a charge of 2 X10–9 C is 2.47x104 N/C.

The electric field can be calculated using Coulomb's Law.

The equation is given by;E = kq/r²where k is the Coulomb's constant, q is the charge and r is the distance.

Here, the electric field can be calculated as;E = (9x10^9 N m²/C²)(2x10^-9 C)/(0.081 m)²E = 2.47x10^4 N/C2.

The charge (in units of pC) of the wire inside the Gaussian surface is 12.57 pC.

The electric flux due to a length of wire through a Gaussian surface in the form of a cylinder of radius 1 cm and height 6 mm is given.

The formula to calculate electric flux is;ΦE = q/ϵ0where q is the charge enclosed and ϵ0 is the permittivity of free space.

Therefore, the charge of the wire can be calculated as;q = ΦEϵ0 = (4x10² N/C)(8.85x10^-12 C²/N m²) = 3.54x10^-9 C = 3.54 pCIn units of pC, the charge will be 12.57 pC (picoCoulombs)

Know more about electric field here:

https://brainly.com/question/11482745

#SPJ11

A Ford passes a Toyota on the road (both vehicles are traveling in the same direction). The Ford moves at a constant speed of 33.6 m/s. Just as the Ford passes it, the Toyota is traveling at 23.4 m/s. As soon as the Ford passes the Toyota, the Toyota begins to accelerate forward at a constant rate. Meanwhile the Ford just keeps going at a steady 33.6 m/s to the east. The Toyota catches up to the Ford a distance of 110.2 m ahead of where the Ford first passed it. What was the magnitude of the Toyota s acceleration? 2.6 m/s^2 3.1 m/s^2 1.3 m/s^2 6.2 m2

Answers

The magnitude of the Toyota's acceleration is 1.3 m/s²

How to find the magnitude of the Toyota's acceleration?

The initial velocity of Toyota is 23.4 m/s.

Distance traveled by the Ford to cross Toyota is given by:

Distance traveled by the Ford = speed × time

The time taken by Ford to pass Toyota is given by:

time = distance / speed = 110.2 / 33.6 = 3.28s

The distance traveled by Toyota during the time Ford took to pass Toyota is given by:

d = ut + 1/2at²

where,

u = initial velocity of Toyota

a = acceleration of Toyota

t = time taken by Toyota to catch Ford

d = 23.4 × 3.28 + 1/2 × a × 3.28²d = 76.752 + 5.38ad = 82.13m

The distance between Toyota and Ford at time t is given by:

s = 33.6t - 23.4t = 10.2t

Let the time taken by Toyota to catch Ford be T

Then,

10.2T + 1/2 × a × T² = 82.13 m

On solving above equation, the magnitude of the Toyota's acceleration is found to be 1.3 m/s².

Hence, the correct option is 1.3 m/s².

Learn more about acceleration:

https://brainly.com/question/25876659

#SPJ11

6. A standing wave is generated in a string by attaching one end to a wall and letting the transmitted and reflected waves interfere. If the wavelength of the wave is 25.0 cm, how far from the wall is

Answers

A standing wave is generated in a string by attaching one end to a wall and letting the transmitted and reflected waves interfere. If the wavelength of the wave is 25.0 cm, the second antinode is 62.5 cm away from the wall.

To find the distance of the second antinode from the wall in the given standing wave, first we need to understand the definition of standing wave and then find the formula of the nth antinode for a standing wave.

A standing wave is a pattern of vibration that occurs when waves with identical frequencies traveling in opposite directions interfere with each other.

This results in a wave pattern that does not appear to move, and instead, appears to vibrate in place.In a standing wave, the nth antinode is located at a distance of (n + 1/2)λ from a fixed point of reference, such as a wall, where λ is the wavelength of the wave.

So the distance of the second antinode from the wall will be:

(2 + 1/2)λ = 5/2λ

Given that the wavelength of the wave is 25.0 cm.

So, distance of the second antinode from the wall will be:

5/2λ = (5/2) x 25.0 = 62.5 cm

Therefore, the distance of the second antinode from the wall in the given standing wave is 62.5 cm.

Learn more about the wavelength:

https://brainly.com/question/16051869

#SPJ11

Scarlett is playing outside. She knocks her toy train in to the lake. The train has parts that are made of stein and she has a wooden fishing rod. How can the fishing rod be changed to help her find the train?

Answers

In order to help Scarlett retrieve her toy train from the lake, the wooden fishing rod can be modified or adapted by Attaching a magnet, Adding a hook or grappling device, and Using a net or scoop.

Attaching a magnet: Scarlett can attach a strong magnet to the end of the fishing rod. Since the train contains parts made of steel, the magnet will be attracted to the metallic components. By carefully maneuvering the magnet with the fishing rod, Scarlett can potentially attract and retrieve the train from the water.

Adding a hook or grappling device: Scarlett can affix a hook or grappling mechanism to the fishing rod. By casting the hook near the location where the train fell into the lake and skillfully maneuvering the rod, she can attempt to hook onto the train or one of its parts. With a successful hook, she can slowly reel in the train and bring it back to shore.

Using a net or scoop: If the toy train is floating on the surface of the lake or near the shallow edges, Scarlett can attach a net or scoop to the end of the fishing rod. By carefully positioning the net or scoop around the train, she can scoop it up and safely retrieve it without causing any damage.

It's important to note that the success of these modifications will depend on factors such as the depth of the lake, the accessibility of the train, and the size and weight of the fishing rod. Additionally, adult supervision or assistance may be necessary to ensure safety, especially if the lake is deep or poses any hazards.

Know more about strong magnets here:

https://brainly.com/question/24905839

#SPJ8

Find the potential difference. Magnetic Field = 250 T radius =
36mm (circular path)

Answers

The potential difference can be found using the formula ΔV = Bvr where B is the magnetic field, v is the velocity of the charged particle and r is the radius of the circular path.

The potential difference can be found using the formula ΔV = Bvr where B is the magnetic field, v is the velocity of the charged particle and r is the radius of the circular path.

Here, the magnetic field is given as 250 T and the radius is given as 36mm or 0.036m.

However, the velocity of the charged particle is not given. Therefore, the potential difference cannot be determined.

Know more about potential difference here:

https://brainly.com/question/23716417

#SPJ11

A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg. m². The wheel is initially at rest. Then at t = 0 a force F(t)= (3.00 N/s)t is applied tangentially to the wheel and the wheel starts to rotate. Part A What is the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions? Express your answer with the appropriate units. ? PA F= Value

Answers

A wheel with radius 0.0600 m rotates about a horizontal friction less axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg. m². The wheel is initially at rest. Then at t = 0 a force F(t)= (3.00 N/s)t is applied tangentially to the wheel and the wheel starts to rotate. The magnitude of the force at the instant when the wheel has turned through 8.00 revolutions is 12.0 N.

The angular displacement of the wheel is given by

θ = 8.00 rev = 8.00 * 2π rad

The angular velocity of the wheel is given by

ω = dθ/dt = (8.00 * 2π rad) / t

The torque on the wheel is given by

τ = F * r = F * 0.0600 m

The moment of inertia of the wheel is given by

I = 2.50 kg * m²

The equation for the torque is

τ = I * α

where α is the angular acceleration.

Substituting the known values into the equation for the torque, we get

F * 0.0600 m = 2.50 kg * m² * α

F = 2.50 kg * m² * α / 0.0600 m

F = 41.67 α N

The angular acceleration is given by

α = ω/t

Substituting the known values into the equation for the angular acceleration, we get

α = (8.00 * 2π rad) / t

α = 16π rad/s

Substituting the known value of the angular acceleration into the equation for the force, we get

F = 41.67 α N

F = 41.67 * 16π rad/s N

F = 12.0 N

Therefore, the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions is 12.0 N.

To learn more about moment of inertia visit: https://brainly.com/question/14460640

#SPJ11

Other Questions
The meaning of tolerance is demonstrated in how we treat people not how we treat ideas. True.or false The Dynamic Duo is a value-weighted index with two stocks: A and B. A constituted 75% of the value of the index at the beginning of the year. During the year, A went up 15% and B rose 6%. What was the percentage change in Dynamic Duo index over the year? The goal of selling strategies for new and emerging products is to:A. Increase market shareB. Maintain market shareC. Maximize profitD. Reduce production costs A sample of rock is composed of a mixture of 42% quartz, 27% of plagioclase, and 31% of pyrite. The dry unit weight of this rock is 29.4 kN/m cube. Its longitudinal wave velocity measured in the laboratory is 2400m/s. Describe its slate of fissuring.Typical value of longitudinal velocity = 2400 m/s Dry unit weight of the rock = 29.4 kN/m cube Sam gets a new job with a small employer and enrolls in a health benefit plan that includes dependent coverage on Insulin pump. When will claims related to her pre-existing condition be covered?A. ImmediatelyB. after a waiting period of 90 daysC. after a waiting period of 12 monthsD. after proving she has been complication free for 6 months Let P be the vector space of polynomials of degree at most 2. Consider the following set of vectors in P2. B={1,t-1, (t-1)} (a) (2 pts) Show that B is a basis for P. (b) (2 pts) Find the coordinate vector, [p(t)]B, of p(t) = 1 + 2t + 3t relative to B. The ledger of Costello Company at the end of the current year shows Accounts Receivable $110,000, Sales Revenue $840,000, and Sales Returns and Allowances $20,000. Instructions (a) If Costello uses the direct write-off method to account for uncollectible accounts, jour- nalize the adjusting entry at December 31, assuming Costello determines that L. Dole's $1,400 balance is uncollectible. (b) If Allowance for Doubtful Accounts has a credit balance of $2,100 in the trial balance, journalize the adjusting entry at December 31, assuming bad debts are expected to be (1) 1% of net sales, and (2) 10% of accounts receivable. (c) If Allowance for Doubtful Accounts has a debit balance of $200 in the trial balance, journalize the adjusting entry at December 31, assuming bad debts are expected to be (1) 0.75% of net sales and (2) 6% of accounts receivable. rst ~ ryx by the sss similarity theorem. which ratio is also equal to RT/RX and RS/RY ?a.XY/TS b.SY/RY c.RX/XT d.ST/YX What is the present value of $1265 to be paid in four years ifthe interest rate is 7%? (Keep three decimal places as youcalculate - Round to the nearest hundredth). Use your knowledge of triangle inequalities to solve Problems 4-7. 4. Can three segments with lengths 8, 15, and 6 make a triangle? Explain your answer. 5. For an isosceles triangle with congruent sides of length s, what is the range of lengths for the base, b? What is the range of angle measures, A, for the angle opposite the base? Write the inequalities and explain your answers. 6. Aaron, Brandon, and Clara sit in class so that they are at the vertices of a triangle. It is 15 feet from Aaron to Brandon, and it is 8 feet from Brandon to Clara. Give the range of possible distances, d, from Aaron to Clara. 7. Renaldo plans to leave from Atlanta and fly into London (4281 miles). On the return, he will fly back from London to New York City (3470 miles) to visit his aunt. Then Renaldo heads back to Atlanta. Atlanta, New York City, and London do not lie on the same line. Find the range of the total distance Renaldo could travel on his trip. Original content Copyright by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor. 260 Which is the main reason for high sti risk among teens and young adults? A woman deposits $11,000 at the end of each year for 10 years in an investment account with a quaranteed interest rate of 4% compounded annually (a) Find the value in the account at the end of the 10 years. (b) Her sister works for an investment firm that pays 3% compounded annually. If the woman deposits money with this firm instead of the one in part (a), how much will she have in her account at the end of 10 years? (e) How much would she lose or gain over 10 years by investing in her sister's firm? CHITE orre (a) The woman's deposits form an because the deposits are made at the of each period. Therefore, the formula should be used Help me solve this Clear all View an example Textbook An individual is 48 years old. At the end of each month, he deposits $260 in a retirement account that pays 4.91% interest compounded monthly (a) Alter 8 years, what is the value of the account? (b) If no further deposits or withdrawals are made to the account, what is the value of the account when the individual reaches age 657 (a) For the first 8 years, the individual's deposits form an because the deposits are made at the should be used After 8 years, the account Help me solve this G ore help. View an example. of each period. Therefore, the formula formula should be used to behave as an annuity and Clear all arra Your company is conducting individual career assessments. For each of these assessments you are to pay licence fees, additionally labour cost apply. The variable costs per assessment are CHF 60 The fixed costs are labour cost of CHF 70000 on a yearly basis (40% of their capacity including social charges). Your company can perform up to 1600 assessments per year. The external company EVAL limited is offering to perform these assessments at a standard price per test. Including the licence fee the overall cost per assessment would be CHF 125. You have excess capacity to conduct all yearly assessments. You can not reduce the working time of your employees and these are not be assigned to other tasks. What is the financial impact from outsourcing all assessments to EVAL? (Stock) option prices can be affected by different factors. Which statement is TRUE?A) An American option cannot be worth less than a European option on the same underlying stock andwith otherwise identical characteristics.B) Whereas an options time value can be zero, an options intrinsic value is always positive.C) An increase in the volatility of the underlying stock increases the intrinsic value of calls and puts onthat stock (keep all other factors that influence option prices constant).D) If put options are out-of-the-money that means that you do not have to pay for the option when thestock price exceeds the exercise price. The option is basically for free. The Homestead Act and the Morrill Act awarded land in the West to settlers who agreed to settle the frontier, spurring thepurchased necessary goods and livestock to make the journey to their new homesmilitary mighteconomyhealthphilosophyof the nation to improve as those settlers fill the blank _____ are facts that lend believability to claims of value and benefit. The government officials were members of the ______ class. A] noble b] commoner c ] serf d] slave Tax Rate = 35%RFR = 8%Equity Risk Premium = 7%Coupon Rate on the Debt = 10%Preferred Stock is 12% PreferredBeta = 1.20Dividends = $5 per shareEarnings = $10 per shareROE = 18%Debt is 40% of the Capital StructurePreferred Stock is 10% of the Capital StructureEquity (common stock) is 50% of the Capital StructureWhat is the WACC?What is the After Tax Cost of Debt? When it comes to cloud computing if one of the requirements for a project is to have the most control over the systems in the cloud, which of the following is a service model that would be best suited for this goal?(a) Infrastructure(b) Platform(c) Software(d) Virtualization. Subject: Oral HealthAn oral health reportA patient flossed once every day, brushes their teeth once in the morning and once before bedThey had their tonsils removed 10 years prior but theyve both regrown to about ladybug sizeThe patient has noticed a small white dot (a tonsil stone) on one of the regrown tonsilsThe patient has hay fever (outdoor allergies, allergic to local trees, grass, flowers, etc) They are having sinus issues and pain when swallowing because of post nasal drainage, they noticed that the small tonsil stone is slowly coming more prominentThe questionCould their hay fever contribute to the development of her tonsil stone?