World Builder is responsible for designing and developing compelling environments using _____ and unique assets. Terrain editors


CAD


Photoshop


Blender

Answers

Answer 1

World Builder is responsible for designing and developing compelling environments using terrain editors and unique assets.

World Builders are responsible for designing and creating immersive environments in video games or virtual worlds. To achieve this, they often use specialized software tools known as terrain editors to create and modify the landscape or terrain of the environment.

These tools allow World Builders to sculpt and shape the terrain, add textures, vegetation, and other environmental features to create a visually compelling and engaging world for players to explore. While World Builders may also use other software tools such as CAD, Photoshop, or Blender, terrain editors are typically the primary tool for their work.

To know more about software visit:

https://brainly.com/question/29839915

#SPJ11


Related Questions

If I have 5 current carrying conductors in a raceway what percentage of ampacity from table 310.16 Through Table 310.19 Do I need to use

Answers

If diverse current-bearing conductors are integrated into a raceway, the ampacity of the conductors must be altered to accommodate the elevated amount of heat released due to their close contact.

How to explain the information

The recalculation factor relies on the kind of raceway, the number of victuals, and the caliber of the victuals.

As an illustration, per the National Electrical Code (NEC), if five flow conductors inhabit a metal tube, the adjustment portion for 90°C rated cables is fifty percent. This implies that the ampacity of the lines ought to be multiplied by 0.5 or thinned out by half.

Learn more about conductor on

https://brainly.com/question/492289

#SPJ1

Assume the following network represent a friendship network. Who has the highest number of friends in this network? Joe Jane Bob Dave Alice

A. Jane

B. Joe

C. Jane & Joe

D. Bob

Answers

Answer:

c. because since they are two the the relationship network would definitely be more

A composite plane wall consists of a 3-in. -thick layer of insulation (ks = 0. 029 Btu/h · ft · °R) and a 0. 75-in. -thick layer of siding (ks = 0. 058 Btu/h · ft · °R). The inner temperature of the insulation is 67°F. The outer temperature of the siding is 8°F. Determine at steady state (a) the temperature at the interface of the two layers, in °F, and (b) the rate of heat transfer through the wall in Btu/h·ft2 of surface area

Answers

At steady state, the temperature at the interface of the two layers is 41°F, and the rate of heat transfer through the wall is 2.48 Btu/h·ft² of surface area.

A composite plane wall is composed of two layers: a 3-inch-thick insulation with thermal conductivity ks=0.029 Btu/h·ft·°R, and a 0.75-inch-thick siding with ks=0.058 Btu/h·ft·°R. The inner temperature of the insulation is 67°F, and the outer temperature of the siding is 8°F.

(a) To determine the temperature at the interface of the two layers, we apply Fourier's Law of heat conduction: q = ks × (T1 - T2) / d, where q is the heat transfer rate, T1 and T2 are the temperatures of two points, and d is the distance between them. Since the heat transfer rate is constant across the wall, we can set up an equation for each layer:

q = 0.029 × (67 - T_interface) / 3
q = 0.058 × (T_interface - 8) / 0.75

Solving these equations simultaneously, we get T_interface = 41°F.

(b) Using the equation for either layer, we can find the rate of heat transfer through the wall:

q = 0.029 × (67 - 41) / 3
q = 2.48 Btu/h·ft²

You can learn more about the surface area at: brainly.com/question/29298005

#SPJ11

18.18 A structural steel column is 30 ft long and must support an axial compressive load of 20 kips. Using Euler's formula and a factor of safety of 2.0, select the lightest wide-flange
section. Assume that the column is pin connected at each end. Check the applicability of Euler's formula.

Answers

Based on the information using Euler's formula, the calculation is Imin / A = 4.533

What is the information about?

Euler's formula connects five fundamental mathematical constants: the imaginary unit "i", natural logarithm base "e", number pi "π", cosine function (cos), and sine function (sin). The beauty of this equation lies in linking two seemingly unrelated concepts - exponential functions and trigonometry.

In this case, a structural steel column is 30 ft long and must support an axial compressive load of 20 kips. Using Euler's formula and a factor of safety of 2.0, select the lightest wide-flange

section.

The calculation will be:

20 × 10³/2 = π² × 2g × 10 × I / (360)² × A

Imin / A = 4.533

Learn more about Euler on

https://brainly.com/question/28914523

#SPJ1

Question 1 [15 Marks]
The following are the results of tests done on soil sample to determine its maximum dry
density (MDD) and optimum moisture content (OMC):
Table Q1: Determination of MDD and OMC
Dry density mould number
Mass of empty mould, g
Mass of mould + Compacted moist Soil, g
Volume of mould, ml
Moisture content sample number
Mass of empty tin, g
Mass of tin + wet soil, g
Mass of tin + dry soil, g
B1
B2 B3 B4
4649 4649
4649 4649
9579 9792 9905 9886
2328 2328
2328 2328
W1 W2 W3 W4
522 536
550 528
1086 1120 1075
1034
989 1033 1060
1013
1.1. Calculate each sample's moisture content and dry density.
Moisture content
Dry density
B5
4649
9765
2328
W5
537
1033
973
(10)

Answers

Note that the calculations relating to soil samples such as the moisture content and dry density are given as follows.

What is the computations relating to the dry density and moisture content?

To calculate the moisture content of each sample, we can use the formula:

Moisture content (%) = [(Mass of wet soil - Mass of dry soil) / Mass of dry soil] x 100%

Using the data from Table Q1, we can calculate the moisture content of each sample as follows:

Sample B1:

Moisture content = [(9792 - 4649) / 4649] x 100% = 110.96%

Sample B2:

Moisture content = [(9905 - 4649) / 4649] x 100% = 112.48%

Sample B3:

Moisture content = [(9886 - 4649) / 4649] x 100% = 112.15%

Sample B4:

Moisture content = [(9792 - 4649) / 4649] x 100% = 110.96%

Sample W1:

Moisture content = [(536 - 522) / 522] x 100% = 2.68%

Sample W2:

Moisture content = [(550 - 528) / 528] x 100% = 4.17%

Sample W3:

Moisture content = [(1120 - 1086) / 1086] x 100% = 3.13%

Sample W4:

Moisture content = [(1060 - 1034) / 1034] x 100% = 2.52%

Sample B5:

Moisture content = [(9765 - 4649) / 4649] x 100% = 110.71%

Sample W5:

Moisture content = [(1033 - 973) / 973] x 100% = 6.17%

To calculate the dry density of each sample, we can use the formula:

Dry density (g/cm³) = (Mass of mould + Compacted moist soil - Mass of empty mould) / Volume of mould

Using the data from Table Q1, we can calculate the dry density of each sample as follows:

Sample B1:

Dry density = (9792 - 4649) / 2328 = 2.104 g/cm³

Sample B2:

Dry density = (9905 - 4649) / 2328 = 2.128 g/cm³

Sample B3:

Dry density = (9886 - 4649) / 2328 = 2.121 g/cm³

Sample B4:

Dry density = (9792 - 4649) / 2328 = 2.104 g/cm³

Sample W1:

Dry density = (536 - 522) / 973 = 0.0144 g/cm³

Sample W2:

Dry density = (550 - 528) / 1013 = 0.0217 g/cm³

Sample W3:

Dry density = (1120 - 1086) / 989 = 0.0344 g/cm³

Sample W4:

Dry density = (1060 - 1034) / 1013 = 0.0256 g/cm³

Sample B5:

Dry density = (9765 - 4649) / 2328 = 2.098 g/cm³

Sample W5:

Dry density = (1033 - 973) / 971 = 0.0618 g/cm³

Therefore, the moisture content and dry density for each sample are as follows:



Sample B1 | 110.96 | 2.104

Sample B2 | 112.48 | 2.128

Sample B3 | 112.15 | 2.121

Sample B4 | 110.96 | 2.104

Sample W1 | 2.68 | 0.0144

Sample W2 | 4.17 | 0.0217

Sample W3 | 3.13 | 0.0344

Sample W4 | 2.52 | 0.0256

Sample B5 | 110.71 | 2.098

Sample W5 | 6.17 | 0.0618

Note: Moisture content is given as a percentage, and dry density is given in grams per cubic centimeter (g/cm³).

It's worth noting that samples B1, B2, B3, and B4 have similar dry densities, which indicates that they are probably from the same soil type or location. Similarly, samples W1, W2, W3, and W4 have relatively low dry densities, which suggests that they may be organic soils or contain a significant amount of organic matter.

Sample W5 has a significantly higher moisture content and lower dry density than the other samples, indicating that it is a more saturated soil. This information can be useful in determining the soil's suitability for certain uses or in designing foundations and structures on or in the soil.

Learn more about Moisture content at:

https://brainly.com/question/13724830

#SPJ1

Assume that the electrical subcontractor forgot to place the sleeves for a group of large conduits in a concrete deck prior to pouring concrete. The rebar subcontractor did not provide additional reinforcing because their work practice is to only add trim bars around deck penetrations physically placed on the deck. In this case the concrete deck will need to be reinforced with steel angles due to the absence of the rebar trim bars, and then the deck will be core drilled for the conduits. Which subcontractor will furnish and install the steel angles

Answers

The steel subcontractor will furnish and install the steel angles.

In this scenario, the need for additional reinforcement in the form of steel angles arises due to the absence of rebar trim bars. The rebar subcontractor did not provide additional reinforcing because their work practice is limited to only adding trim bars around deck penetrations physically placed on the deck.

Hence, the responsibility of furnishing and installing the steel angles falls upon the steel subcontractor.

Steel angles are commonly used to reinforce concrete structures and provide additional support. They can be installed by welding or bolting them onto the existing structure. In this case, once the steel angles are installed, the deck will be core drilled for the conduits to pass through.

For more questions like Structure click the link below:

https://brainly.com/question/10730450

#SPJ11

1 kmol of air at 18°C and 225 kPa is contained in an elastic tank. What is the volume


of the tank? If the volume is doubled at the same pressure, determine the final


temperature

Answers

The volume of the elastic tank containing 1 kmol of air at 18°C and 225 kPa is approximately 23.86 m³. Doubling the volume at the same pressure would result in a final temperature of approximately 12.5°C.

The volume of the elastic tank containing 1 kmol of air at 18°C and 225 kPa can be calculated using the ideal gas law:

V = nRT/P

where V is the volume, n is the number of moles, R is the gas constant, T is the temperature, and P is the pressure.

Plugging in the given values, we get:

V = (1 kmol)(8.314 J/mol.K)(291 K)/(225 kPa)

V ≈ 23.86 m³

When the volume is doubled at the same pressure, the new volume becomes 2V, and the ideal gas law gives us:

T₂ = (2V)(P)/(nR)

Plugging in the known values, we get:

T₂ = (2)(23.86 m³)(225 kPa)/(1 kmol)(8.314 J/mol.K)

T₂ ≈ 285.6 K

Converting this temperature to Celsius, we get:

T₂ ≈ 12.5°C

For more questions like Volume click the link below:

https://brainly.com/question/1578538

#SPJ11

In the runner of a reaction-type hydraulic turbine, the followings are given: r
J

=25 cm,α
l

=30

, α
2

=90

, cross-sectional area perpendicular to the absolute velocity c
l

is As=0. 125 m
2
, loss of head hL=15 m, leakage efficiency η
x

=0. 95, the number of revolutions of the runner is n=300rpm, the flow rate is Q=3 m
3
/s and the tangential velocity coefficient at the outlet is k
n2

=0. 3. Determine a) Net head (H
0

), b) Hydraulic efficiency (η


), c) Relative velocity at the runner input (w
l

) and tangential velocity at the outlet (u
2

), d) For 100 m head (H




), find the number of revolutions (n

) under the best efficiency conditions

Answers

Answer:

a) To determine the net head, we can use the following formula:

H0 = H + hL

where H is the total head and hL is the head loss. We are given that hL = 15 m, so we need to find H.

To find H, we can use the following formula:

H = (w2/2g) + (p2 - p1)/ρg + z2 - z1

where w is the flow rate, g is the acceleration due to gravity, p is the pressure, ρ is the density of the fluid, z is the height, and the subscripts 1 and 2 refer to two different points in the system.

We can assume that the turbine is operating at steady state, which means that the pressure and height at the inlet and outlet of the turbine are the same. Therefore, we can simplify the formula to:

H = w2/2g

Substituting the given values, we get:

H = (3 m3/s)2 / (2 x 9.81 m/s2) = 45.98 m

Therefore, the net head is:

H0 = 45.98 m + 15 m = 60.98 m

b) To determine the hydraulic efficiency, we can use the following formula:

ηℏ = (H0 × Q) / (g × As × H∘)

where H∘ is the available head, which is given as 100 m.

Substituting the given values, we get:

ηℏ = (60.98 m × 3 m3/s) / (9.81 m/s2 × 0.125 m2 × 100 m) = 0.147 or 14.7%

c) To determine the relative velocity at the runner input (wl) and the tangential velocity at the outlet (u2), we can use the following formulas:

wl = Q / As

u2 = k n2 √(2gH0)

Substituting the given values, we get:

wl = 3 m3/s / 0.125 m2 = 24 m/s

u2 = 0.3 x 300 rpm x (2π/60) x √(2 x 9.81 m/s2 x 60.98 m) = 36.68 m/s

d) To find the number of revolutions under the best efficiency conditions, we can use the following formula:

n′ = n (H0 / H∘)^(1/2)

Substituting the given values, we get:

n′ = 300 rpm (60.98 m / 100 m)^(1/2) = 219.77 rpm

Therefore, the number of revolutions under the best efficiency conditions is approximately 220 rpm.

a) To find the net head (H0), we use the following formula:

H0 = H - hL

where H is the total head and hL is the loss of head. We are given that hL = 15 m. To find H, we use the following formula:

H = (V^2)/(2g) + z

where V is the absolute velocity at the runner input, g is the acceleration due to gravity, and z is the vertical distance between the centerline of the runner and the free surface of the water. Since the runner is a reaction-type turbine, we can assume that the velocity triangles are axial and that the absolute velocity at the runner input is equal to the relative velocity. We can also assume that the flow is incompressible and that the velocity of the water is negligible at the inlet and outlet of the turbine.

From the given information, we know that the cross-sectional area perpendicular to the absolute velocity at the runner input is As = 0.125 m^2, the flow rate is Q = 3 m^3/s, and the tangential velocity coefficient at the outlet is k_n2 = 0.3. We can use these values to find the absolute velocity at the runner input:

V = Q/As = 3/0.125 = 24 m/s

We can then use the formula for total head to find H:

H = (V^2)/(2g) + z = (24^2)/(2*9.81) + 25/2 = 156.5 m

Finally, we can use the formula for net head to find H0:

H0 = H - hL = 156.5 - 15 = 141.5 m

Therefore, the net head is 141.5 m.

b) To find the hydraulic efficiency (η_ℏ), we use the following formula:

η_ℏ = (H0*η_x)/(Q*g)

where η_x is the leakage efficiency. We are given that η_x = 0.95. Substituting the given values, we get:

η_ℏ = (141.5*0.95)/(3*9.81) = 0.459

Therefore, the hydraulic efficiency is 0.459 or 45.9%.

c) To find the relative velocity at the runner input (w_l), we use the following formula:

w_l = V/cos(α_2)

where α_2 is the angle between the absolute velocity and the tangent to the runner at the outlet. We are given that α_2 = 90°, so cos(α_2) = 0. Substituting the given values, we get:

w_l = V/cos(α_2) = undefined

The relative velocity at the runner input is undefined because the denominator in the formula is zero.

To find the tangential velocity at the outlet (u_2), we use the following formula:

u_2 = k_n2*V

where k_n2 is the tangential velocity coefficient at the outlet. We are given that k_n2 = 0.3. Substituting the given values, we get:

u_2 = k_n2*V = 0.3*24 = 7.2 m/s

Therefore, the tangential velocity at the outlet is 7.2 m/s.

d) To find the number of revolutions (n') under the best efficiency conditions for a head of 100 m, we can use the following formula:

η_ℏ = (H0'*η_x)/(Q'*g)

where H0' is the net head, Q' is the flow rate, and g is the acceleration due to gravity. We want to find n' such that η_ℏ is maximized for a head of 100 m. Since the hydraulic efficiency is a function of the number of revolutions, we need to find the value of n' that maximizes η_ℏ.

To do this, we can plot η_ℏ as a function of n' and find the maximum value. However, this is a time-consuming process. Alternatively, we can use the following approximation:

n' = n*(H0'/H0)^0.5

where n is the given number of revolutions and H0 is the given net head. This approximation is based on the fact that the hydraulic efficiency is proportional to the square root of the net head and inversely proportional to the square root of the number of revolutions.

Substituting the given values, we get:

n' = 300*(100/141.5)^0.5 = 258.5 rpm

Therefore, for a head of 100 m, the number of revolutions under the best efficiency conditions is approximately 258.5 rpm.

What are the ways that the American Planning Association (APA) defines the planning profession? (Select all that apply. )


planning to make businesses, citizens, and community leaders work together to enrich their communities


planning to ensure that new communities develop around specific single functions


planning to help cities to provide more and higher-quality choices to citizens


planning communities today to have value far into the future

Answers

The ways that the American Planning Association (APA) defines the planning profession include:

Planning to make businesses, citizens, and community leaders work together to enrich their communitiesPlanning to help cities provide more and higher-quality choices to citizensPlanning communities today to have value far into the future

Option A, C, and D is correct.

The APA does not define planning as ensuring that new communities develop around specific single functions.

The American Planning Association (APA) defines the planning profession as a collaborative process that helps communities create better futures for themselves. The APA identifies four ways that the planning profession achieves this goal. First, planners help communities provide more and higher-quality choices to citizens. Second, planners ensure that new communities develop around specific single functions.

Finally, planners work to create communities that have value far into the future by considering the social, economic, and environmental impacts of their decisions. By embracing these principles, planners aim to create sustainable communities that offer a range of options for housing, transportation, jobs, recreation, and other important aspects of daily life.

Therefore, option A, C, and D is correct.

Learn more about planning https://brainly.com/question/30522410

#SPJ11

A manufacturing plant has a 25 KVA single phase motor with a lagging power factor of 0.85
and this motor gets its power from a nearby a.c. voltage supply. A power factor correction
capacitor of 12 kVar is also connected p

Answers

In this case, the real power consumed by the motor is 21.25 kW.

How is this so?

The real power (kW) consumed by the motor can be calculated using the formula:

P = S x pf

where P is the real power in kilowatts (kW), S is the apparent power in kilovolt-amperes (kVA), and pf is the power factor.

Given that the motor has a rating of 25 kVA and a power factor of 0.85 lagging, we have

P = 25 kVA x 0.85 = 21.25 kW

So we can say rightly that the real power consumed by the motor is 21.25 kW.

Learn more about Power:
https://brainly.com/question/29436001
#SPJ1

Full Question:

Although part of your question is missing, you might be referring to this full question:

A manufacturing plant has a 25 KVA single phase motor with a lagging power factor of 0.85 and this motor gets its power from a nearby a.c. voltage supply. A power factor correction capacitor of 12 kVar is also connected parallel to the motor.

Calculate the real power (kW) consumed by the motor (3)

When one knows the true values x1 and x2 and has approximations X1 and X2 at hand, one can see where errors may arise. By viewing error as something to be added to an approximation to attain a true value, it follows that the error ei is related to Xi and xi as xi 5 Xi 1 ei (a) Show that the error in a sum X1 1 X2 is (x1 1 x2) 2 (X1 1 X2) 5 e1 1 e2 (b) Show that the error in a difference X1 2 X2 is (x1 2 x2) 2 (X1 2 X2) 5 e1 2 e2 (c) Show that the error in a product X1X2 is x1x2 2 X1X2 < X1X2 a e1 X1 1 e2 X2 b (d) Show that in a quotient X1yX2 the error is x1 x2 2 X1 X2 < X1 X2 a e1 X1 2 e2 X2 b

Answers

Answer:

(a) For the sum X1 + X2, we have:

X1 + X2 = (x1 + e1) + (x2 + e2)

= x1 + x2 + (e1 + e2)

The error in the sum is given by:

e1 + e2 = (x1 + e1) + (x2 + e2) - (x1 + x2)

= (x1 + x2) + (e1 + e2) - (x1 + x2)

= e1 + e2

Therefore, the error in the sum is e1 + e2, as required.

(b) For the difference X1 - X2, we have:

X1 - X2 = (x1 + e1) - (x2 + e2)

= x1 - x2 + (e1 - e2)

The error in the difference is given by:

e1 - e2 = (x1 + e1) - (x2 + e2) - (x1 - x2)

= (x1 - x2) + (e1 - e2) - (x1 + x2)

= e1 - e2

Therefore, the error in the difference is e1 - e2, as required.

(c) Show that the error in a product X1X2 is:

x1x2 - X1X2 ≈ (X1 * e2) + (X2 * e1)

Proof:

We start with the equation:

X1X2 = (x1 + e1)(x2 + e2)

Expanding the right side of the equation, we get:

X1X2 = x1x2 + x1e2 + x2e1 + e1e2

Subtracting x1x2 from both sides, we get:

x1x2 - X1X2 = x1e2 + x2e1 + e1e2

Since e1 and e2 are small compared to x1 and x2, we can ignore the e1e2 term. Therefore, we can approximate the error as:

x1x2 - X1X2 ≈ (X1 * e2) + (X2 * e1)

(d) Show that in a quotient X1 / X2, the error is:

(x1 / x2) - (X1 / X2) ≈ ((e1 * X2) - (e2 * X1)) / (X2)^2

Proof:

We start with the equation:

X1 / X2 = (x1 + e1) / (x2 + e2)

Expanding the right side of the equation, we get:

X1 / X2 = (x1 / x2) + (x1 * e2 - x2 * e1) / (x2)^2 + e1 / x2 - e2 * x1 / (x2)^2

Subtracting (x1 / x2) from both sides, we get:

(x1 / x2) - (X1 / X2) = (x1 * e2 - x2 * e1) / (x2)^2 + e1 / x2 - e2 * x1 / (x2)^2

Simplifying the expression, we get:

(x1 / x2) - (X1 / X2) ≈ ((e1 * X2) - (e2 * X1)) / (X2)^2

This is the error in the quotient.

Explanation:

A(n) (blank) on the head of the piston is frequently used


to indicate piston pin offset and the front of the piston

Answers

A "notch" on the head of the piston is frequently used to indicate piston pin offset and the front of the piston. The notch helps to ensure proper orientation during installation and reduces the chances of incorrect assembly.

Piston designs often include a marking or symbol on the head of the piston to indicate piston pin offset and the front of the piston. This is important information for engine builders and technicians during engine assembly as it ensures that the piston is installed correctly. The piston pin offset refers to the distance between the centerline of the piston pin and the centerline of the piston skirt. This offset can vary depending on the engine design and helps to reduce piston slap noise during operation. The front of the piston is also marked to ensure that the piston is installed in the correct orientation with respect to the engine's timing and valve events. Failure to properly align the piston can result in engine damage or poor performance. The marking or symbol or notch on the piston head is typically provided by the piston manufacturer and should be referenced during engine assembly.

Read more questions related to piston at:

https://brainly.com/question/25870707

#SPJ11

In this exercise, we examine the effect of the interconnection network topology on the clock cycles per instruction (CPI) of programs running on a 64-processor distributed-memory multiprocessor. The processor clock rate is 3. 3 GHz and the base CPI of an application with all references hitting in the cache is 0. 5. Assume that 0. 2% of the instructions involve a remote communication reference. The cost of a remote communication reference is (100 + 10h) ns, where h is the number of communication network hops that a remote reference has to make to the remote processor memory and back. Assume that all communication links are bidirectional.


a. Calculate the worst-case remote communication cost when the 64 processors are arranged as a ring, as an 8x8 processor grid, or as a hypercube. (Hint: The longest communication path on a 2n hypercube has n links. )


b. Compare the base CPI of the application with no remote communication to the CPI achieved with each of the three topologies in part (a).


c. How much faster is the application with no remote communication compared to its performance with remote communication on each of the three topologies in part (a)

Answers

1. The number of communication network hops is 6, and the worst-case remote communication cost in a hypercube topology is 160 ns

2. The CPI for the application in the grid topology is 0.54

3. Thhe ring topology has the highest performance improvement, with a 84% increase in performance when compared to the case where remote communication is used.

How to explain the information

1. The number of communication network hops is 6, and the worst-case remote communication cost in a hypercube topology is:

100 + 10h = 100 + 10 x 6 = 160 ns

2. In the case of the grid topology, the worst-case remote communication cost is 240 ns, so the CPI for the application in the grid topology is:

= 0.5 + (0.2/100) x 240 = 0.54

In the case of the hypercube topology, the worst-case remote communication cost is 160 ns, so the CPI for the application in the hypercube topology is:

= 0.5 + (0.2/100) x 160 = 0.54

3. For the ring topology:

Performance improvement_ring = (0.92 - 0.5) / 0.5 x 100% = 84%

For the grid topology:

Performance improvement_grid = (0.54 - 0.5) / 0.5 x 100% = 8%

For the hypercube topology:

Performance improvement_hypercube = (0.54 - 0.5) / 0.5 x 100% = 8%

Thus, the ring topology has the highest performance improvement, with a 84% increase in performance when compared to the case where remote communication is used.

Learn more about communication on

https://brainly.com/question/28153246

#SPJ4

You are appointed as a technician at an electrical company well known Tru Technology, your manager would like to use a battery as a storage device to store the energy from the solar panel during the day and hence use this energy during the night to power up lighting loads in his house. The lighting loads require a total maximum supply current of 5 A at 12 V DC. If the battery is required to take over the supply of power to the loads for 20 hours, determine: The required ampere–hour rating of the battery? Show all your calculation

Answers

You'll need a battery with a 100 ampere-hour rating to provide power for the lighting loads for 20 hours.

As a technician at Tru Technology, you're tasked with finding the appropriate battery to store energy from solar panels for nighttime use. To determine the required ampere-hour (Ah) rating of the battery, you need to consider the power needs of the lighting loads and the desired duration of the operation.

The lighting loads require a maximum supply current of 5 A at 12 V DC. To calculate the power needed for the loads, you can use the formula:

Power (W) = Voltage (V) × Current (A)

Power = 12 V × 5 A = 60 W

Now, you want the battery to supply power for 20 hours. To find the energy required, use the formula:

Energy (Wh) = Power (W) × Time (h)

Energy = 60 W × 20 h = 1200 Wh

To determine the required ampere-hour rating, divide the energy by the voltage:

Battery Ah = Energy (Wh) / Voltage (V)

Battery Ah = 1200 Wh / 12 V = 100 Ah

You can learn more about the battery at: brainly.com/question/19225854

#SPJ11

What diverts fire fighting resources away from actual emergencies

Answers

The factors that are listed below can divert fire fighting resources away from actual emergencies

What diverts fire fighting resources away from actual emergencies?

Reacting to phony emergencies can waste time and money for firemen if they happen frequently.

Non-emergency calls can be made to the fire department for services like rescuing a cat from a tree or opening a car door. Fire departments that don't have enough personnel may find it difficult to handle several situations at once as seen.

Learn more about fire fighters:https://brainly.com/question/28229388

#SPJ1

State the size of the total drag force when the car is travelling at constant speed

Answers

When a car is travelling at a constant speed, the total drag force acting on the car is equal in magnitude and opposite in direction to the driving force applied by the engine.

This is because the car is not accelerating and therefore the net force acting on it is zero. In order to maintain a constant speed, the engine must apply a force equal in magnitude and opposite in direction to the total drag force. The size of the total drag force depends on various factors such as the shape of the car, the speed of the car, and the air density. In general, at higher speeds, the total drag force increases due to the increased air resistance. When a car is travelling at a constant speed, the total drag force acting on the car is also constant. The size of the drag force depends on factors such as the size and shape of the car, the speed at which it is travelling, and the properties of the medium it is moving through (such as air or water). However, as long as these factors remain constant, the total drag force will also be constant.

Learn more about Drag Force at:

https://brainly.com/question/23942493

#SPJ11

Write the command that can be used to answer the following questions. (Hint: Try each out on the system to check your results. )

a. Find all files on the system that have the word "test" as part of their filename.

b. Search the PATH variable for the pathname to the awk command.

c. Find all files in the /usr directory and subdirectories that are larger than 50 kilobytes in size.

d. Find all files in the /usr directory and subdirectories that are less than 70 kilobytes in size.

e. Find all files in the / directory and subdirectories that are symbolic links.

f. Find all files in the /var directory and subdirectories that were accessed less than 60 minutes ago.

g. Find all files in the /var directory and subdirectories that were accessed less than six days ago. H. Find all files in the /home directory and subdirectories that are empty. I. Find all files in the /etc directory and subdirectories that are owned by the group bin

Answers

a. To find all files on the system that have the word "test" as part of their filename, use the command:

```
find / -name "*test*"
```

b. To search the PATH variable for the pathname to the awk command, use the command:

```
which awk
```

c. To find all files in the /usr directory and subdirectories that are larger than 50 kilobytes in size, use the command:

```
find /usr -type f -size +50k
```

d. To find all files in the /usr directory and subdirectories that are less than 70 kilobytes in size, use the command:

```
find /usr -type f -size -70k
```

e. To find all files in the / directory and subdirectories that are symbolic links, use the command:

```
find / -type l
```

f. To find all files in the /var directory and subdirectories that were accessed less than 60 minutes ago, use the command:

```
find /var -type f -amin -60
```

g. To find all files in the /var directory and subdirectories that were accessed less than six days ago, use the command:

```
find /var -type f -atime -6
```

h. To find all files in the /home directory and subdirectories that are empty, use the command:

```
find /home -type f -empty
```

i. To find all files in the /etc directory and subdirectories that are owned by the group bin, use the command:

```
find /etc -type f -group bin
```

A biomedical transducer can be represented by a series RLC circuit with a 100 ohm resistors and unknown capacitor and inductor. Analysis of the transducer in the lab indicated that the damping coefficient is 0. 4 and natural resonance frequency is 159 Hz. Determine the values for the capacitive and the inductive components. Discuss the way to increase the damping coefficient to 0. 707 without affecting the natural resonance frequency

Answers

The capacitance is 0.0000004 F and the inductance is 0.025 H.

To determine the values of the capacitive and inductive components, we can use the following formulas:

Natural resonance frequency (ω₀) = 1/√(LC)

Damping coefficient (ζ) = R√(C/L) / 2

where ω₀ is the angular frequency of the circuit, ζ is the damping coefficient, R is the resistance, L is the inductance, and C is the capacitance.

We are given ω₀ = 2πf₀ = 2π × 159 = 1000π rad/s and ζ = 0.4, and R = 100 Ω.

Using the formula for ζ and solving for C/L, we get:

C/L = (2ζ/R)²

C/L = (2×0.4/100)²

C/L = 0.000016

Using the formula for ω₀ and substituting in the value of C/L that we just found, we get:

ω₀ = 1/√(LC)

1000π = 1/√(L×0.000016)

L = 0.025 H

Now that we know L, we can use the equation C/L = 0.000016 to solve for C:

C = L × 0.000016

C = 0.025 × 0.000016

C = 0.0000004 F

Therefore, the capacitance is 0.0000004 F and the inductance is 0.025 H.

To increase the damping coefficient to 0.707 without affecting the natural resonance frequency, we need to increase the resistance R. The damping coefficient is proportional to the square root of R, so we can increase R to achieve the desired damping coefficient. We can do this by adding a resistor in series with the transducer or by using a material with higher resistance for the transducer. Note that changing the resistance does not affect the natural resonance frequency because it does not depend on the resistance.

To know more about angular frequency visit:

https://brainly.com/question/30885221

#SPJ11

Engineering System Design - Tutorial
Q2. A concrete mixer is driven by a 3-phase motor through a reduction gearbox and a chain drive
(Fig 2). The power required at the concrete mixer is 4 kW and the mixer is designed to rotate
at about 30 rev/min. Select a motor for the application and state:
a) the motor type and frame number
b)
the power
c) the speed
d) the efficiency at full-load.
Motor
Coupling
Concrete Mixer
Chain Drive:
n-96%; Speed ratio - 2:1
Reduction Gear box:
n-90%; Speed Ratio - 15:1
Fig.2

Answers

Based on the torque requirement of 2,013 Nm, we can select a motor with a power rating of 7.5 kW or higher.

How to explain the power

Power (P) = 4 kW

Speed (N) = 30 rev/min

Torque (T) = (60 x P) / (2 x pi x N) = (60 x 4,000) / (2 x pi x 30) = 2,013 Nm

Speed (N2) = N1 / (speed ratio of chain drive x speed ratio of gearbox)

where N1 is the speed required at the mixer, which is 30 rev/min

speed ratio of chain drive is 2:1

speed ratio of gearbox is 15:1

N2 = 30 / (2 x 15) = 1 rev/mi

Based on the torque requirement of 2,013 Nm, we can select a motor with a power rating of 7.5 kW or higher.

Learn more about speed on

https://brainly.com/question/1634438

#SPJ1

Saturated steam at 1. 20bar (absolute)is condensed on the outside ofahorizontal steel pipe with an inside and outside diameter of 0. 620 inches and 0. 750 inches, respectively. Cooling water enters the tubes at 60. 0°F and leaves at 75. 0°F at a velocity of 6. 00ft/s. (HINT: You may assume laminar condensate flow. You many also assume that the mean bulk temperature of the cooling water is equal to the wall temperature on the outside of the pipe, T". You may also neglect the viscosity correction in your calculations. )a)What are the inside

Answers

The inside heat transfer coefficient of the pipe can be calculated as 4.72 BTU/(hrft^2°F).

To calculate the inside heat transfer coefficient, we can use the Nusselt number correlation for laminar flow over a horizontal cylinder with condensation.

With the given parameters, we can calculate the Nusselt number and then use it to calculate the inside heat transfer coefficient. The calculated value is 4.72 BTU/(hrft^2°F).

This value is important for determining the rate of heat transfer from the steam to the cooling water through the pipe wall.

For more questions like Number click the link below:

https://brainly.com/question/17429689

#SPJ11

a) The input power to a 240 V,50 Hz supply circuit is 450 W. The load current is 3.6 A at a leading power factor. i) Calculate the resistance of the circuit. [3 marks ] ii) Calculate the reactive power of the circuit. [2 marks] iii) Calculate the capacitance of the circuit. [2 marks]

Answers

Answer:

a)

i) To find the resistance of the circuit, we can use the formula:

Power = (Voltage)^2 / Resistance

Rearranging the formula, we get:

Resistance = (Voltage)^2 / Power

Substituting the given values, we get:

Resistance = (240)^2 / 450 = 127.2 ohms

Therefore, the resistance of the circuit is 127.2 ohms.

ii) To find the reactive power of the circuit, we can use the formula:

Reactive power = (Voltage)^2 x sin(θ)

where θ is the angle between the voltage and current phasors.

Since the load current is leading, the angle θ is negative. We can find the value of sin(θ) using the power factor:

Power factor = cos(θ)

cos(θ) = resistance / impedance

impedance = resistance / cos(θ) = 127.2 / cos(-cos⁻¹(0.8)) = 223.4 ohms

sin(θ) = √(1 - cos²(θ)) = √(1 - 0.64) = 0.8

Substituting the given values, we get:

Reactive power = (240)^2 x 0.8 = 46,080 VAR (volt-ampere reactive)

Therefore, the reactive power of the circuit is 46,080 VAR.

iii) To find the capacitance of the circuit, we can use the formula:

Capacitance = Reactive power / (ω x Voltage^2)

where ω is the angular frequency of the AC supply and is given by 2πf, where f is the frequency of the supply.

Substituting the given values, we get:

ω = 2π x 50 = 314.16 rad/s

Capacitance = 46,080 / (314.16 x 240^2) = 1.53 x 10^-6 F (farads)

Therefore, the capacitance of the circuit is 1.53 x 10^-6 F.

what is the minimum bend radius for a 1.0-mm-thick sheet metal with a tensile reduction of area of 30%? does the bend angle affect your answer? explain your answer.

Answers

The minimum bend radius for a 1.0-mm-thick sheet metal with a tensile reduction of area of 30% depends on several factors, including the material type and the bend angle. A general rule of thumb, the minimum bend radius for this type of sheet metal should be around 1.5 times the thickness of the material. The minimum bend radius would be 1.5 mm.

It is important to note that the bend angle can affect the minimum bend radius. For instance, a sharper bend angle would require a smaller bend radius than a more gradual bend angle. Therefore, it is crucial to consider the desired bend angle when determining the minimum bend radius for a given sheet metal.Additionally, the tensile reduction of area is a crucial factor in determining the minimum bend radius for sheet metal. This parameter measures the amount of deformation a material can undergo before it fractures. A higher tensile reduction of area value indicates that the material can be bent more easily and thus can have a smaller minimum bend radius. In contrast, a lower tensile reduction of area value indicates that the material is less malleable and may require a larger minimum bend radius to avoid fracturing.The minimum bend radius for a 1.0-mm-thick sheet metal with a tensile reduction of area of 30% should be around 1.5 mm. However, the desired bend angle and the material type can affect this value, so it is crucial to consider these factors when determining the minimum bend radius for a given sheet metal.

For such more questions on rule of thumb

https://brainly.com/question/30846028

#SPJ11

Assume the small electronic computer is needed for data processing in an engineering office and the computer can be leased for $50 per day which includes the cost of maintenance or purchased for $25,000, the computer is expected to have a useful life for 15 years with salvage valise of $4000 at the end of that year. Itâs estimated that annual maintenance cost will be $2,800 if the interest rate is 9% and it cost $50 per day to operate the computer advise management on what choice to make

Answers

Here we see that purchasing the computer is a better choice since the total cost of ownership over 15 years is less than the present value of leasing for the same period.

To determine the best option, we need to compare the present value of the cost of leasing with the present value of the cost of purchasing.

Option 1: Lease

Cost per day = $50

Number of days in a year = 365

Annual cost of leasing = $50/day × 365 = $18,250

Present value of annual leasing cost over 15 years at 9% interest rate:

PV(Lease) = $18,250 × [(1 - (1 + 0.09)^-15) / 0.09] = $173,186.76

Option 2: Purchase

Cost of computer = $25,000

Salvage value at the end of 15 years = $4,000

Annual maintenance cost = $2,800

Total cost of ownership over 15 years:

Total Cost = Cost of computer + Present value of annual maintenance cost over 15 years + (Cost - Salvage value) / Present value factor for 15 years

Total Cost = $25,000 + [$2,800 × ((1 - (1 + 0.09)^-15) / 0.09)] + [($25,000 - $4,000) / (1 + 0.09)^15]

Total Cost = $67,739.12

Comparing the two options, we see that purchasing the computer is a better choice since the total cost of ownership over 15 years is less than the present value of leasing for the same period. Therefore, management should choose to purchase the computer.

Learn more about Decision making at:

https://brainly.com/question/17230008

#SPJ11

The resistance of a coil of aluminum wire at 18 ° c is 200, the temperature of the wire increases and the resistance rises to 240. if the temperature coefficient of resistance of aluminum is 0.0039 at 18, then determine what temperature the coil has risen to?

Answers

The temperature the coil has risen to is approximately 96.64°C.

To find the temperature the coil has risen to, we'll use the temperature coefficient of resistance (TCR) formula:

R2 = R1 × (1 + α × (T2 - T1))

Where R1 and R2 are the initial and final resistances, α is the temperature coefficient of resistance, and T1 and T2 are the initial and final temperatures. In this case, R1 = 200, R2 = 240, α = 0.0039, and T1 = 18°C.

First, rearrange the formula to solve for T2:

T2 = T1 + (R2 / (R1 × α) - 1) / α

Now, plug in the values:

T2 = 18 + (240 / (200 × 0.0039) - 1) / 0.0039

T2 = 18 + (240 / 0.78 - 1) / 0.0039

T2 ≈ 18 + (307.69 - 1) / 0.0039

T2 ≈ 18 + 306.69 / 0.0039

T2 ≈ 18 + 78.64

T2 ≈ 96.64°C

You can learn more about resistance at: brainly.com/question/11431009

#SPJ11

During a tensile test of a steel specimen, the strain at a stress of 35 mpa was calculated to be 0. 000 170 (point a). the strain at a stress of 134 mpa was calculated to be 0. 000 630 (point b). determine the modulus of elasticity for this material using the slope between these two points. calculate the expected stress that would correspond to a strain of 0. 000 250. the proportional limit is 200 mpa

Answers

The expected stress that would correspond to a strain of 0.000250 is 182 MPa.

What is the modulus of elasticity and expected stress for a steel specimen with a strain of 0.000250, given the data points at 35 MPa/0.000170 and 134 MPa/0.000630, and a proportional limit of 200 MPa?

To determine the modulus of elasticity for the material, we need to find the slope of the stress-strain curve between the two given points (a and b).

The slope between points a and b can be calculated using the following equation:

slope = (strain_b - strain_a) / (stress_b - stress_a)

Substituting the values given in the problem, we get:

slope = (0.000630 - 0.000170) / (134 - 35) = 0.00364

Therefore, the modulus of elasticity can be calculated as the slope times the proportional limit, which is given as 200 MPa in the problem:

modulus of elasticity = slope * proportional limit = 0.00364 * 200 = 0.728 GPa

To calculate the expected stress that would correspond to a strain of 0.000250, we can use the following formula:

stress = strain * modulus of elasticity

Substituting the values we have calculated, we get:

stress = 0.000250 * 0.728 GPa = 182 MPa

Therefore, the expected stress that would correspond to a strain of 0.000250 is 182 MPa.

Learn more about strain of 0.000250

brainly.com/question/19317733

#SPJ11

Easily find HTML color codes for your website using our color picker, color chart and HTML color names with Hex color codes, RGB and HSL values.

Answers

Utilizing color picker tools, color charts, and HTML color names with Hex, RGB, and HSL values will simplify the process of finding the right color codes for your website.


A color picker tool allows you to select a color visually, and it will provide you with the corresponding HTML color code. A color chart is a pre-defined set of colors with their respective color codes, making it simple to choose a color and obtain its code. HTML color names are a list of standard color names that web browsers recognize, which come with Hex, RGB, and HSL values. Hex color codes represent colors using six-digit hexadecimal values, while RGB and HSL values represent colors in Red-Green-Blue and Hue-Saturation-Lightness formats, respectively.

To know more about HTML visit:

https://brainly.com/question/24065854

#SPJ11

What is a renewable energy ?

Answers

Renewable energy refers to the energy obtained from natural sources that are replenished faster than their consumption rate. Sources like sunlight and wind are constantly renewing themselves.

What is renewable energy and non renewable?

Renewable energy is a type of energy that comes from sources that can be naturally replenished within a human lifetime. Renewable energy sources encompass the utilization of solar radiation, wind energy, water flow, and geothermal warmth. While a majority of renewable energy options are eco-friendly and enduring, certain ones are not.

Renewable and nonrenewable resources are differentiated based on their ability to replenish themselves. While a renewable resource can regenerate itself at the same rate at which it is utilized, a nonrenewable resource has a finite quantity.

Learn more about renewable energy  from

https://brainly.com/question/545618

#SPJ1

A). You will write your own function to implement image filtering in spatial domain from
scratch. More specifically, you will implement filter() function should conform to the following:
1. support grayscale images,
2. support arbitrarily shaped filters where both dimensions are odd (e.g., 3 x 3 filters, 5 x 5
filters),
3. pad the input image with the same pixels as in the outer row and columns, and
4. return a filtered image which is the same resolution as the input image.
Your code should include the following:
1. Read a color image and then convert it to grayscale.
2. Then define one filter from the different types of smoothing and sharpening filters that
we studied such as Box, Sobel, Gaussian, etc.
3. Before you apply the filter on the image matrix, apply padding operation on the image so
that after filtering, the output filtered image resolution remains the same.
4. Then you should use nested loops (two for loops for row and column) for filtering operation
by matrix multiplication and addition (using image window and filter).
5.
Finally, display the original image, filter, filtered image using the first filter, and filtered image
using the second filter.
Hint: use subplot function to display all images in one figure.
B). Also, you will apply image filtering in Frequency domain as we did in the practical lesson 1.
Therefore, you will use the same image you have read, apply the steps we studied, display the images.
Submission

Answers

Here is information on image filtering in spatial and frequency domains.

What is the explanation for the above?

Image filtering in the spatial domain involves applying a filter mask to an image in the time domain to obtain a filtered image. The filter mask or kernel is a small matrix used to modify the pixel values in the image. Common types of filters include the Box filter, Gaussian filter, and Sobel filter.

To apply image filtering in the spatial domain, one can follow the steps mentioned in the prompt, such as converting the image to grayscale, defining a filter, padding the image, and using nested loops to apply the filter.

In contrast, image filtering in the frequency domain involves transforming the image into the frequency domain using a Fourier transform, applying a filter to the frequency domain representation, and then transforming it back to the spatial domain using an inverse Fourier transform.

Both spatial and frequency domain filtering can be used for various image processing tasks such as noise reduction, edge detection, and image enhancement.

Learn more about  frequency domain at:

https://brainly.com/question/14680642

#SPJ1

The ventilating fan of the bathroom of a building has a volume flow rate of 32 l/s and runs continuously. if the density of air inside is 1.20 kg/m3, determine the mass of air vented out in one day. the mass of air is kg.

Answers

The mass of air vented out in one day from the bathroom with a volume flow rate of 32 l/s and air density of 1.20 kg/m3 is approximately 3,283.2 kg.

To calculate the mass of air vented out in one day, first, we need to find the volume of air vented out in one day, which is given by:

Volume flow rate x time = 32 l/s x 86,400 s/day = 2,764,800 l/day

Then, we can convert this volume to mass using the density of air:

Mass = Volume x Density = 2,764,800 l/day x 1.20 kg/m3 = 3,283.2 kg/day

Therefore, the mass of air vented out in one day from the bathroom is approximately 3,283.2 kg.

For more questions like Air click the link below:

https://brainly.com/question/31149654

#SPJ11

4. 68 steam enters a turbine in a vapor power plant operating at steady state at 560°c, 80 bar, and exits as a saturated vapor at 8 kpa. The turbine operates adiabatically, and the power developed is 9. 43 kw. The steam leaving the turbine enters a condenser heat exchanger, where it is condensed to saturated liquid at 8 kpa through heat transfer to cooling water passing through the condenser as a separate stream. The cooling water enters at 18°c and exits at 36°c with negligible change in pressure. Ignoring kinetic and potential energy effects and stray heat transfer at the outer surface of the condenser, determine the mass flow rate of cooling water required, in kg/s

Answers

The mass flow rate of cooling water can be determined by considering the condenser heat exchanger in the power plant.

What is the mass flow rate of cooling water?

The given paragraph describes a steam power plant where steam enters a turbine at a high pressure and temperature and exits as a saturated vapor at low pressure after doing work.

The steam is then condensed to saturated liquid in a condenser heat exchanger, and cooling water passing through the condenser absorbs heat from the steam to facilitate condensation.

The mass flow rate of cooling water required for this process is to be determined.

The solution involves applying the first law of thermodynamics and the energy balance equation to the steam and cooling water streams, respectively.

Learn more about mass flow rate

brainly.com/question/13348162

#SPJ11

Other Questions
Directions: Select ALL the correct answers.The author intends to male the essay a clear argument. Which two sentences should the author add to the firstparagraph to clearly establish the claim about the value of self-driving cars?OImagine walking down the street and seeing people sitting in the backseat of acar but not seeing anyone in the driver's seat.Studies show that over 80 percent of car accidents are the result of human error,but self-driving cars can't get distracted, which makes them safer.A hundred years ago, no one would have imagined a self-driving car becausepeople were just getting used to driving regular cars.Self-driving cars are also more efficient because they are run by a computer thatregulates speed and creates greater fuel economy.As more and more people choose to ride in self-driving cars, the options for howthese cars appear from the outside and on the inside will change _____ is one of the major methods used by people for upward social mobility A. TrackingB. No child left behindC. Social placementD. Sorting How do external problems like the Great Depression have an effect on politics? How does it reflect on America?No linksNeed ASAP What ways would you have to communicate with one another? tammy knows that businesses track consumers' shopping habits, like whether or not they use the traditional shopping process or shop online, but she wants to remain anonymous. what is one step tammy can take to maintain her anonymity using the traditional shopping process? 2x + 7 = -1(3 - 2x) solve for X write a thesis statement on the novel Dagon. It should be very specific The SAFe Scrum Master role includes responsibilities to which other group?o Business ownerso Solution Managemento Solution Train Engineerso The other Agile Teams on the Agile release train (ART) A comparative balance sheet and income statement is shown for Cruz, Incorporated.CRUZ, INCORPORATEDComparative Balance SheetsAt December 31 2021 2020Assets Cash $ 63,600 $ 15,900Accounts receivable, net 27,400 33,700Inventory 57,400 63,300Prepaid expenses 3,500 2,900Total current assets 151,900 115,800Furniture 70,500 82,200Accumulated depreciationFurniture (10,900) (6,200)Total assets $ 211,500 $ 191,800Liabilities and Equity Accounts payable $ 10,000 $ 14,100Wages payable 6,000 3,300Income taxes payable 1,000 1,800Total current liabilities 17,000 19,200Notes payable (long-term) 20,700 47,800Total liabilities 37,700 67,000Equity Common stock, $5 par value 153,600 124,000Retained earnings 20,200 800Total liabilities and equity $ 211,500 $ 191,800CRUZ, INCORPORATEDIncome StatementFor Year Ended December 31, 2021Sales $ 328,400Cost of goods sold 211,300Gross profit 117,100Operating expenses (excluding depreciation) 60,000Depreciation expense 25,300Income before taxes 31,800Income taxes expense 11,600Net income $ 20,200 Required:Use the indirect method to prepare the operating activities section of Cruzs statement of cash flows. the primary goals of purchasing include all of the below, except? the primary goals of purchasing include all of the below, except? optimize customer satisfaction improve the quality of the finished goods produced ensure the uninterrupted flow of materials and services at the lowest total cost develop as many good quality suppliers as possible for each material or service tommy solved the equation x ^-x-12=0 select the factores of x^-x-12 Which of the following is not a run-on sentence? A.) The average length for a feature film is between 80 and 100 minutes but there are some films that exceed 14 hours in length and one film that was 85 hours long. B.) According to data collected throughout film history, the average length for a feature film is between 80 and 100 minutes, although some far exceed the standard running time. C.) There are some movies that clock in at over 14 hours long even though the average movie is around 80 minutes but can run up to 120 minutes.D.) With an average film length of 80 to 100 minutes it can be surprising to discover that some movies have been 14 hours long and even 85 hours long. Use the unit circle to find the exact value of the trig function cos(210) You are asked by your teacher to arrange the letters in the word probability regardless of each word 's meaning. in how many ways can you arrange the letter in the word? [tex]\color{blue}{analysis}[/tex] : the problem involve permutation or combination) of objects [tex]\color{red}{required}[/tex] : the value that is to be solved in the problem is the____[tex]\color{pink}{given}[/tex]: the given value is____ which is the_____ of the word probability[tex]\color{cyan}{formula}[/tex]: we will use the formula______ to soive for the unknown.solution When Romeo Montague and Juliet Capulet meet at as masquerade ball, it is love at first sight. Over the next four frenetic days, a variety of obstacles stand in the way of their pursuit of truelove. Will the two lovers find a way of staying together forever? As you read Romeo and Juliet,fill in the boxes for each element of the plays plot What are the four most abundant elements in biomolecules. Please Help! For Ln=1nni=1i1n , given Ln as indicated, express their limits as n[infinity] as definite integrals, identifying the correct intervals Part I: Record heart rate as Heart Beats Per MinuteA. Take pulse for 10 seconds and multiply by 6. 78B. Walk fast for 440 yards. C. Take pulse for 10 seconds and multiply by 6. D. Do 3 to 5 minutes of stretching exercises. E. Take pulse for 10 seconds and multiply by 6. F. Jog slowly for 440 yards. G. Take pulse for 10 seconds and multiply by 6. H. Do 3 to 5 minutes of stretching exercises. I. Take pulse for 10 seconds and multiply by 6. J. Run for 440 yards. K. Take pulse for 10 seconds and multiply by 6. L. Do 3 to 5 minutes of stretching exercises. M. Record heart rate 5 minutes after running the 440. A 0.1 kg toy train car moving at 1.0 m/s runs into a stationary car with a mass of 0.15 kg. At what speed do they move off together? Determine if the sequence below is arithmetic or geometric and determine the common difference / ratio in simplest form.12,8,4,...12,8,4,...This is sequence and the is equal to