Two objects are moving in the x, y plane as shown. If a net torque of 44 N∙m acts on them for 5.0 seconds, what is the change in their angular momentum?

Two Objects Are Moving In The X, Y Plane As Shown. If A Net Torque Of 44 Nm Acts On Them For 5.0 Seconds,

Answers

Answer 1

Answer:

190kg*m^2/s  

Explanation:

Torque can be defined as the rate of change of angular momentum

Step one:

We need to solve for the total angular momentum acting on them

the expression for the angular momentum is given as      

L=mrv-----1    

where

L=angular momentum

m=mass

v=velocity

r=radius

Step two:

For the first object

m=6kg

r=1m

v=2m/s

L1=6*1*2= 12kg*m^2/s

For the second object

m=3kg

r=2m

v=3m/s

L2=3*2*3= 18kg*m^2/s  

Step three:

Total angular momentum= L1+L2= 12+18= 30kg*m^2/s        

τ=44Nm

time= 5 secs

ΔL=τ*time  

ΔL=44*5=220N-ms

hence the angular impulse=220Nms

Change in their angular momentum= Angular impulse-angular momentum

Change in their angular momentum= 220-30

Change in their angular momentum=190kg*m^2/s  


Related Questions

A 3.00-kg block starts from rest at the top of a 35.5° incline and slides 2.00 m down the incline in 1.45 s. (a) Find the acceleration of the block.

Answers

Answer:

0.344 m/s^2

Explanation:

The first step is to calculate V

V= distance /time

= 2/1.45

= 1.379 m/s

Therefore the acceleration of the block can be calculated as follows

a= V - U/2d

= 1.379 - 0/2×2

= 1.379/4

= 0.344 m/s^2

When an unknown resistance RxRx is placed in a Wheatstone bridge, it is possible to balance the bridge by adjusting R3R3 to be 2500ΩΩ. What is RxRx if R2R1=0.625R2R1=0.625?

Answers

Answer:

Rₓ = 1562.5 Ω

Explanation:

The formula for the wheat stone bridge in balanced condition is given as follows:

R₁/R₂ = R₃/Rₓ

where,

Rₓ = Unknown Resistance = ?

R₃ = 2500 Ω

R₂/R₁ = 0.625

R₁/R₂ = 1/0.625 = 1.6

Therefore,

1.6 = 2500 Ω/Rₓ

Rₓ = 2500 Ω/1.6

Rₓ = 1562.5 Ω


A race car accelerates from rest with a displacement of 25.0 m. If the
acceleration is 1.2 m/s2, what is the car's final velocity?

Answers

Answer:

Vf = Vi + at

t = Vf - Vi = 0.0m/s - 1.75 m/s

    --------- = ------------------------- = 8.8s

         a              -0.20 m/s(squared)

Explanation:

This is what I got I am pretty sure it's correct but correct me if I'm wrong : )

will give brainliest pls help

Answers

Answer:

a and c

Explanation:

4. A 5.0 kg block moving to the right at 12.0 m/sec collides with a 4.0 kg block moving to the right at 2 m/sec. If the 4.0 kg moves to the right at 10 m/sec after the collision, what will be the speed of the 5.0 kg block? How much energy was lost during the collision?

Answers

Answer:

Energy lost = 55.28Joules

Explanation:

Using the law of momentum:

m1u1+m2u2 = m1v1+m2v2

m1 and m2 are the masses of the objects

u1 and u2 are the initial velocities.

v1 and v2 are final velocities

Given

m1 = 5kg

m2 = 4kg

u1 = 12m/s

u2 = 2m/s

v1 = 10m/s

v2 = ?

Substitute

5(12)+4(2)=4(10)+5v2

60+8 = 40+5v2

68-40 = 5v2

28 = 5v2

v2 = 28/5

v2 = 5.6m/sec

Hence the speed of the 5kg block is 5.6m/s

Energy lost = Kinetic energy after collision - kinetic energy before collision

KE after collision = 1/2m1v1²+1/2m2v2²

KE after collision = 1/2(5)10²+1/2(4)(5.6)²

= 250+62.72

= 312.72Joules

KE before collision = 1/2m1u1²+1/2m2u2²

KE before collision = 1/2(5)12²+1/2(4)(2)²

= 360+8

= 368Joules

Energy lost = 368-312.72

Energy lost = 55.28Joules

1.A large beach ball weighs 4.0 N. One person pushes it with a force of 7.0 N due South while another person pushes it 5.0 N due East. Find the acceleration on the beach ball.

2. What is the weight of a 70 kg astronaut on the earth, on the moon, (g=1.6 m/s2), on Venus (g = 18.7 m/s2) and in outer space traveling at a constant velocity

Answers

Answer:

1. force applied southward = -4 j

force applied eastward = 5 i

total force applied = 5i - 4j

magnitude of total force applied = √(5)²+(-4)²

magnitude of total force applied = √25 + 16 = √41

magnitude of total force applied = 6.4N

But the beach ball also weighs 4 N,

which means that a force of 4N is required to overcome the inertia of the ball

Net force applied on the ball = total force applied - force applied by inertia

Net force applied on the ball = 6.4 - 4

Net force applied on the ball = 2.4 N

Mass of the ball:

Mass of the ball = weight of the ball / gravitational constant

Mass of the ball = 4 / 9.8 = 0.4 kg

Acceleration of Ball:

from newton's second law of motion:

F = ma

replacing the variables

2.4 = 0.4 * a          (where a is the acceleration of the ball)

a = 2.4/0.4

a = 6 m/s²

2. Mass of astronaut = 70 kg

Weight of Earth:

Weight = Mass * acceleration due to gravity

Weight = 70 * 9.8

Weight = 686 N

Weight on Moon:

Weight = Mass * acceleration due to gravity

Weight = 70 * 1.6                             (we are given that g = 1.6 on moon)

Weight = 112 N

Weight on Venus:

Weight = Mass * acceleration due to gravity

Weight = 70 * 18.7                         (we are given that g = 18.7 on Venus)

Weight = 1309 N

A roller coaster stops at the top of a hill. What force brings the roller coaster back down to the ground?

Answers

Answer:

Simple enough that it seems like a trick question: gravity.

A 80-kg person stands at rest on a scale while pulling vertically downwards on a rope that is above them. Use g = 9.80 m/s2.

With what magnitude force must the tension in the rope be pulling on the person so that the scale reads 25% of the persons weight?

Answers

Answer:

The tension in the rope is 588 N

Explanation:

I have attached a free body diagram of the problem.

First we calculate the force applied downwards by the person's weight:

[tex]F_{weight} =m*a = 80 kg * 9.8 \frac{m}{s^{2}} = 784 N[/tex]

If the scale reads a 25% of the person' weight:

[tex]F_{Scale} = F_{weight}*0.25=784N*0.25=196N[/tex]

which is the same value (but opposite) to the effective weight of the persons ([tex]F_{Person}=-F_{Scale}[/tex])

The other 75% of the total weight is the force of the rope pulling the person upwards.

[tex]F_{Pull}= F_{weight}*0.75=784N*0.75=588N[/tex]

To verify, we can use 1st Newton's law

∑F = 0

[tex]F_{Rope}-F_{Pull}+F_{Person}-F_{Scale}=0 \\588N-588N+196N-196N=0[/tex]

The speed of a 4.0-N hockey puck, sliding across a level ice surface, decreases at the rate of 2 m/s 2. The coefficient of kinetic friction between the puck and ice is:

Answers

Answer:

μ = 0.2041

Explanation:

Given

[tex]a = -2m/s^2[/tex]

Required

Determine the coefficient of friction (μ)

The acceleration is negative because it is decreasing.

Solving further, we have that:

[tex]F_f =[/tex] μmg

Where

μ = Coefficient of kinetic friction

[tex]F_f = ma[/tex]

So, we have:

ma = μmg

Divide both sides by m

a = μg

Substitute values for a and g

2 = μ * 9.8

Solve for μ

μ = 2/9.8

μ = 0.2041

9. A 50 kg halfback is in the process of making a turn on a football field.
The halfback makes 1/4 of a turn with a radius of 15 meters in 2.1 seconds
before being tackled. What is the net force acting on the halfback before
he is tackled?

Answers

Answer:

Net force = 419.5N

Explanation:

Given the following data;

Mass = 50kg

Radius = 15m

Time = 2.1 secs

Turns = 1/4 = 0.25

In order to find the net force, we would first of all solve for the speed and acceleration of the halfback.

To find speed;

Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.

Mathematically, speed is given by the equation;

[tex]Speed = \frac{distance}{time}[/tex]

But the distance traveled is given by the circumference of a circle = [tex] 2\pi r[/tex]

Since he covered 1/4th of a turn;

[tex] Distance = 0.25 * 2 \pi *r[/tex]

Substituting into the equation;

[tex] Speed, v = \frac {(0.25*2*3.142 * 15)}{2.1}[/tex]

[tex] Speed, v = \frac {23.565}{2.1}[/tex]

Speed, v = 11.22m/s

To find acceleration;

[tex] Acceleration, a = \frac {v^{2}}{r}[/tex]

Where, v = 11.22m/s and r = 15m

Substituting into the equation, we have;

[tex] Acceleration, a = \frac {11.22^{2}}{15}[/tex]

[tex] Acceleration, a = \frac {125.8884}{15}[/tex]

Acceleration, a = 8.39m/s²

To find the net force;

Force is given by the multiplication of mass and acceleration.

Mathematically, Force is;

[tex] F = ma[/tex]

Where;

F represents force.m represents the mass of an object.a represents acceleration.

Substituting into the equation, we have;

[tex] F = 50 * 8.39[/tex]

F = 419.5N

Therefore, the net force acting upon the halfback is 419.5 Newton.

A Ferris wheel rotates at an angular velocity of 0.25 rad/s. Starting from rest, it reaches its operating speed with an average angular acceleration of 0.027 rad/s2. How long does it take the wheel to come up to operating speed?

Answers

Answer:

t = 9.25 s

Explanation:

Given that,

Initial angular velocity, [tex]\omega_o=0[/tex] (at rest)

Final angular velocity, [tex]\omega_o=0.25\ rad/s[/tex]

Angular acceleration, [tex]\alpha =0.027\ rad/s^2[/tex]

We need to find the time it take the wheel to come up to operating speed. We know that the angular acceleration in terms of angular speed is given by :

[tex]\alpha =\dfrac{\omega_f-\omega_o}{t}\\\\t=\dfrac{\omega_f-\omega_o}{\alpha }\\\\t=\dfrac{0.25-0}{0.027}\\\\t=9.25\ s[/tex]

So, it will reach up to the operating speed in 9.25 s.

If the ball is released from rest at a height of 0.63 m above the bottom of the track on the no-slip side, what is its angular speed when it is on the frictionless side of the track

Answers

Answer:

When the ball is on the frictionless side of the track , the angular speed is 89.7 rad/s.

Explanation:

Consider the ball is a solid sphere of radius 3.8 cm and mass 0.14 kg .

Given ,  mass, m=0.14 kg

Ball is released from rest at a height of, h= 0.83 m

Solid sphere of radius, R = 3.8 cm

                                       =0.038 m

From the conservation of energy

                          ΔK  = ΔU  

                [tex]\frac{1}{2}mv^2 +\frac{1}{2} I\omega^2=mgh[/tex]

Here , [tex]I=\frac{2}{5} MR^2 , v= R \omega[/tex]

  [tex]\frac{1}{2}mv^2\frac{1}{2}(\frac{2}{5}MR^2)(\frac{v}{R^2} )=mgh[/tex]

  [tex]\frac{1}{2} [v^2+\frac{2}{5}v^2]= gh[/tex]

[tex]\frac{7}{10} v^2=gh[/tex]

[tex]0.7v^2=gh[/tex]

 v=[tex]\sqrt{[gh/(0.7)][/tex]

=[tex]\sqrt{ [(9.8 m/s^2)(0.83 m) / (0.7) ][/tex]

= 3.408 m/s

Hence, angular speed when it is on the frictionless side of the track,

[tex]\omega=\frac{v}{R}[/tex]

   = (3.408 m/s)/(0.038 m)

[tex]\omega[/tex]   =  89.7 rad/s

Hence , the angular speed is 89.7 rad/s

Help pleaseeeee!
If a force of 12 N is applied to a 4.0 kg object, what acceleration is produced?

Answers

Answer:

The answer is 3 m/s²

Explanation:

The acceleration of an object given it's mass and the force acting on it can be found by using the formula

[tex]a = \frac{f}{m} \\ [/tex]

where

f is the force

m is the mass

From the question we have

[tex]a = \frac{12}{4} \\ [/tex]

We have the final answer as

3 m/s²

Hope this helps you

A pair of equal-length vectors at right angles to each other have a resultant. If the angle between the vectors is less than 90°, their resultant is

Answers

Answer:

Larger in magnitude

Explanation:

As the vectors get closer reducing the 90 degree angle, based on the "parallelogram rule" for vector addition, the magnitude of the resultant vector gets larger than when they are forming a 90 degree angle.

Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.30 mm high. Assume it starts from rest and rolls without slipping.

Answers

Answer:

9.77 m/s

Explanation:

Since the cylinder is rolling, it will have both translational and rotational kinetic energy.

From conservation of energy, its initial mechanical energy equals its final mechanical energy.

So, K' + U' = K + U where K and U are the initial kinetic and potential energies respectively and K' and U' are the final kinetic and potential energies respectively.

So, Since the cylinder starts from rest, its initial kinetic energy K = 0, its initial potential energy = mgh where m = mass of cylinder, g = acceleration due to gravity = 9.8 m/s² and h = height of incline = 7.30 mm = 7.3 × 10⁻³ m . Its final kinetic energy K' = 1/2Iω² + 1/2mv² where I = moment of inertia of cylinder = 1/2mr² where r = radius of cylinder and v = translational velocity of cylinder. Its final potential energy U' = 0. Substituting these into the equation, we have  

K' + U' = K + U

1/2Iω² + 1/2mv² + 0 = 0 + mgh

1/2(1/2mr²)ω² + 1/2mv² = mgh

1/4mr²ω² + 1/2mv² = mgh          

1/4m(rω)² + 1/2mv² = mgh    v = rω

1/4mv² + 1/2mv² = mgh

3/4mv² = mgh

v² = 4gh/3

v = √(4gh/3)

v = √(4 × 9.8 m/s² × 7.3 × 10⁻³ m/3)

v = (√286.16/3) m/s

v = (√95.39) m/s

v = 9.77 m/s

A student throws a water bottle upward into the air. It takes 1.2 seconds for the bottle to reach it's
maximum height. How much time will it take for the water bottle to return to the student's hand
(from its maximum height)?

Answers

Answer:

1.2 seconds

Explanation:

Formula for total time of flight in projectile is; T = 2u/g

Now, for the time to reach maximum height, it is gotten from Newton's first equation of motion;

v = u + gt

t is time taken to reach maximum height.

But in this case, g will be negative since motion is against gravity. Final velocity will be 0 m/s at max height.

Thus;

0 = u - gt

u = gt

t = u/g

Putting t for u/g in the equation of total time of flight, we have;

T = 2t

We are given t = 1.2

Thus, T = 2 × 1.2 = 2.4

Since total time of flight is 2.4 s and time to get to maximum height is 1.2 s, then it means time to fall from maximum height back to the students hand is; 2.4 - 1.2 = 1.2 s

Explain the differences between getting burned by fire and getting burned by dry ice?
Need it ASAP

Answers

Getting burned by fire is different than dried ice because Ice is cold and would give you a bruise .
Hope this helps!

A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 4.40 rev/s; 60.0 revolutions later, its angular speed is 15.0 rev/s. Calculate (a) the angular acceleration (rev/s2), (b) the time required to complete the 60.0 revolutions, (c) the time required to reach the 4.40 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches the 4.40 rev/s angular speed.

Answers

Answer:

The answer is below

Explanation:

a) Using the formula:

[tex]\omega^2=\omega_o^2+2\alpha \theta\\\\\omega=final\ velocity=15\ rev/s,w_o=initial\ velocity=4.4\ rev/s, \\\theta=distance=60\ rev\\\\Substituting:\\\\15^2=4.4^2+2(60)\alpha\\\\2(60)\alpha=15^2-4.4^2\\\\2(60)\alpha=205.64\\\\\alpha=1.71\ rev/s^2[/tex]

b) The disk is initially at rest. Using the formula:

[tex]\theta=\omega_ot+\frac{1}{2}\alpha t^2 \\\\but\ \omega_o=0(rest), \theta=60\ rev,\alpha=1.71\ rev/s^2\\\\Subsituting:\\\\60=0+\frac{1}{2}(1.71) t^2\\\\t=8.4\ s[/tex]

c)

[tex]\omega=\omega_o+\alpha t \\\\but\ \omega_o=0(rest), \omega=4.4 \ rev/s\ rev,\alpha=1.71\ rev/s^2\\\\Subsituting:\\\\4.4=1.71t\\\\t=2.6\ s[/tex]

d)

[tex]\omega^2=\omega_o^2+2\alpha \theta\\\\\omega=final\ velocity=4.4\ rev/s,w_o=initial\ velocity=0\ rev/s, \\\alpha=1.71\ rev/s^2\\\\Substituting:\\\\4.4^2=0+2(1.71)\theta\\\\19.36=3.42\theta\\\\\theta=5.66\ rev[/tex]

How much force (in N) is exerted on one side of an 35.3 cm by 50.0 cm sheet of paper by the atmosphere

Answers

Answer:

A force of 1.788 newtons is exerted on one side of the sheet of paper by the atmosphere.

Explanation:

From definition of pressure, we get that force exerted by the atmosphere ([tex]F[/tex]), measured in newtons, on one side of the sheet of paper is given by the expression:

[tex]F = P_{atm}\cdot w\cdot l[/tex] (Eq. 1)

Where:

[tex]P_{atm}[/tex] - Atmospheric pressure, measured in pascals.

[tex]w[/tex] - Width of the sheet of paper, measured in meters.

[tex]l[/tex] - Length of the sheet of paper, measured in meters.

If we know that [tex]P_{atm} = 101325\,Pa[/tex], [tex]w = 0.353\,m[/tex] and [tex]l = 0.05\,m[/tex], then the force exerted on one side of the sheet of paper is:

[tex]F = (101325\,Pa)\cdot (0.353\,m)\cdot (0.05\,m)[/tex]

[tex]F = 1.788\,N[/tex]

A force of 1.788 newtons is exerted on one side of the sheet of paper by the atmosphere.

The microwave background radiation is observed at a wavelength of 1.9 millimeters. The red shift of these photons is observed to be raoughly 1100. What would be the emitted wavelength?

Answers

Answer:

1730nm

Explanation:

Observed wavelength λ= 1.9 millimeters

Red shift of photons = 1100

Emitted wavelength = λo

Red shift = λ - λo/ λo = 1100

= [(1.9x10^-3 - λo)/ λo] = 1100

= 1.9x10^-3 - λo = 1100 λo

= 1.9x10^-3 = 1100 λo + λo

= 1.9x10^-3 = 1101 λo

We divide through by 1101 to get the value of lambda

1.9x10^-3/1101 = λo

λo = 0.000001726

λo = 1726nm

This is approximately

λo = 1730nm

Thank you!

A particle with charge q = +5.00 C initially moves at v = (1.00 î + 7.00 ĵ ) m/s. If it encounters a magnetic field B = 10 k, find the magnetic force vector on the particle.

Answers

Given :

Force on object moving with constant velocity due to magnetic field is given by :

[tex]\vec{F}=q\vec{v}\times \vec{B}\\\\\vec{F}=-5[ ( \hat{i} + 7\hat{j}) \times ( 10\hat{k})]\\\\\vec{F}=-5[ 10(-\hat{j})+70(\hat{i})]\\\\\vec{F}=50\hat{j}-350\hat{i}\ N[/tex]

Now,

[tex]F = \sqrt{50^2+350^2}\\\\F=353.55\ N[/tex]

Hence, this is the required solution.

A particle with charge q = +5.00 C that is moving with some velocity, then the magnetic force vector on the particle will be 353.55 N.

What is a vector?

The phrase "vector" in physics and mathematics is used popularly to refer to some values that cannot be stated by a simple integer (a scalar) or to certain elements of high - dimensional space.

For things like displacements, forces, and velocity can have both a magnitude and direction, vectors were initially introduced in geometry and physics. Similar to how lengths, masses, and time are represented by real numbers, these quantities were represented by geometric vectors.

In some contexts, tuples—finite sequences of numbers with a definite length—are sometimes referred to as vectors.

From the data given in the question,

F = qv × B

F = -5 [(î +7 ĵ) ×(10 k)]

F = 50 ĵ - 350 î N

Now, calculate the force,

F = √50² + 350²

F = 353.55 N.

To know more about Vector:

https://brainly.com/question/13322477

#SPJ5

differentiate between speed and velocity​

Answers

Explanation:

Speed - The rate at which something moves

Velocity - The speed of something in a specific direction

Velocity is kind of a specific type of speed.

Speed,is a scalar quantity, and is the rate at which an object covers a distance. Speed is independant of direction.
velocity is a vector quantity. it is direction-dependant, and is the rate at which the position changes.

Question 2: If a runner travels 50 m in 5 s, his acceleration is
1 point
250 m/s/s
50 m/s/s
10 m/s/s
2 m/s/s

Answers

the answer is 10 do a good jon

A tired worker pushes a heavy (100-kg) crate that is resting on a thick pile carpet. The coefficients of static and kinetic friction are 0.6 and 0.4, respectively. The worker pushes with a horizontal force of 490 N. The frictional force exerted by the surface is

Answers

Answer:

The friction force exerted by the surface is 490 newtons.

Explanation:

From Physics, we remember that static friction force ([tex]f_{s}[/tex]), measured in newtons, for a particle on a horizontal surface is represented by the following inequation:

[tex]f_{s} \leq \mu_{s}\cdot m \cdot g[/tex] (Eq. 1)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, dimensionless.

[tex]m[/tex] - Mass of the crate, measured in kilograms.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

If [tex]f_{s} = \mu_{s}\cdot m \cdot g[/tex], then crate will experiment an imminent motion. The maximum static friction force is:  ([tex]\mu_{s} = 0.6[/tex], [tex]m = 100\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex])

[tex]f_{s} = (0.6)\cdot (100\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)[/tex]

[tex]f_{s} = 588.42\,N[/tex]

From Newton's Laws we get that current force of friction as reaction to the pulling force done by the worker on the crate is:

[tex]\Sigma F = F-f = 0[/tex]

[tex]f = F[/tex] (Eq. 2)

Where:

[tex]F[/tex] - Horizontal force done by the worker, measured in newtons.

[tex]f[/tex] - Static friction force, measured in newtons.

If [tex]F = 490\,N[/tex], then the static friction force exerted by the surface is:

[tex]f = 490\,N[/tex]

Given that [tex]f < f_{s}[/tex], the crate does not change its state of motion. The friction force exerted by the surface is 490 newtons.  

A 1500 kg car hits a haystack at 8m/s and comes to a stop after 0.6 seconds
A)what is the change in momentum of the car ?
B) what is the impulse that acts on the car ?
C) what is the average force that acts on the car during the collision?
D) what is the work done by the haystack in stopping the car ?

Answers

Answer:

Kindly check explanation

Explanation:

Change in momentum:

m(v - u)

M = mass = 1500kg

v = final velocity = 0 m/s

u = initial velocity = 8m/s

Momentum = 1500(8 - 0)

Momentum = 1500 * 8

Momentum = 12000 kgm/s

B.) impulse that acts on the car

Impulse = Force * time

Impulse = change in momentum with time

Impulse = m(v - u)

Hence, impulse = 12000Ns

C.) Average force action on the car during collision

Impulse = Force * time

12000 = force * 0.6

12000/ 0.6 = force

Force = 20000 N

D.) Workdone by haystack in stopping the car :

Workdone = Force * Distance

Distance = speed * time

Distance = 8 * 0.6

Distance = 4.8m

Hence,

Workdone = 20,000 * 4.8 = 96000 J

ufl.edu A wire of length 27.7 cm carrying a current of 4.11 mA is to be formed into a circular coil and placed in a uniform magnetic field of magnitude 5.85 mT. The torque on the coil from the field is maximized. (a) What is the angle between and the coil's magnetic dipole moment? (b) What is the number of turns in the coil? (c) What is the magnitude of that maximum torque?

Answers

Answer:

A)90°

Explanation:

ufl.edu A wire of length 27.7 cm carrying a current of 4.11 mA is to be formed into a circular coil and placed in a uniform magnetic field of magnitude 5.85 mT. The torque on the coil from the field is maximized. (a) What is the angle between and the coil's magnetic dipole moment? (b) What is the number of turns in the coil? (c) What is the magnitude of that maximum torque?

(a) What is the angle between and the coil's magnetic dipole moment.

The angle between and the coil's magnetic dipole moment is 90°, because it is perpendicular to the field since there is maximum torgue.

(b) What is the number of turns in the coil?

1. a. Describe the type of energy that is observed when a musician's finger plucks a guitar string. does it give your ear kenetic or potential energy .​

Answers

Answer:

kinetic

Explanation:

Answer:

kinetic energy.

Explanation:

A dentist’s drill starts from rest. After 7.28 s of constant angular acceleration it turns at a rate of 16740 rev/min. Find the drill’s angular acceleration. Answer in units of rad/s 2 .

Answers

Answer:

[tex]\alpha =240.79\ rad/s^2[/tex]

Explanation:

Given that,

Initial angular velocity, [tex]\omega_i=0[/tex]

Final angular velocity, [tex]\omega_f=16740\ rev/min = 1753\ rad/s[/tex]

We need to find the angular acceleration of the drill. It is given by the formula as follows :

[tex]\alpha =\dfrac{\omega_f-\omega_i}{t}\\\\\alpha =\dfrac{1753-0}{7.28}\\\\\alpha =240.79\ rad/s^2[/tex]

So, the angular acceleration of the drill is [tex]240.79\ rad/s^2[/tex].

State two function of the mass M placed on the metre rule

Answers

correct answer is mass media is correct answer OK

How much is the spring stretched, in meters, by an object with a mass of 0.49 kg that is hanging from the spring at rest

Answers

Answer:

1.6m

Explanation:

Using the spring equation, which is as follows:

F = Kx

Where; F = force applied on the spring (N)

K = spring constant (3kg/s²)

x = extension of spring (m)

However, Force applied by object = mass × acceleration (9.8m/s²)

F = 0.49kg × 9.8m/s²

F = 4.802N

Since, F = 4.802N

F = Kx

4.802 = 3 × x

4.802 = 3x

x = 4.802/3

x = 1.6006

x = 1.6m

The spring is stretched i.e. the extension of the spring, by 1.6m

Other Questions
Describe the first step of solving the following equation6(2x + 1) = 18 i need help with this answer Match the vocabulary word with its definition. Match the items in the left column to the items in the right column. 1 . compass rosefound new lands 2 . diagramshaped like the earth 3 . explorerlines that run east and west around the earth 4 . time linelines that run from the North Pole to the South Pole 5 . political mapslarge body of water 6 . symbolsshows directions 7 . longitudegraph with pictures 8 . latitudepicture explanation 9 . tablemuch like a graph or chart10 . pictographmap legend11 . globeboundaries12 . oceanorder of events The employees of Neat Clothes work Monday through Friday. Every other Friday the company issues payroll checks totaling $32,000 (or $3,200 per weekday). The current pay period ends on Friday, January 3. Neat Clothes is now preparing financial statements for the year ended December 31. What is the adjusting entry to record accrued salaries at the end of the year Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its destiny is 7.87 g/cm. Whats the larger cubes volume? What was the Sherman Antitrust Act, what did it attempt to do, was it successful? Tara owns a pizza shop. The item purchased most frequently from her shop is a large pizza. For any order, Tara charges $7.00 for each pizza plus $3.00 for delivery services. Tara made a delivery of pizzas to a party for which she charged $45.00. How many pizzas did she deliver? does WZ + WX = XZ, I just need a simple answer, yes or no 9. A 50 kg halfback is in the process of making a turn on a football field.The halfback makes 1/4 of a turn with a radius of 15 meters in 2.1 secondsbefore being tackled. What is the net force acting on the halfback beforehe is tackled? carbohydrates are the body's main source of ____ Visible light is a form ofradiation.Check it PLEASE HELP ME ASAP!!!!Antarctica's Pine Island Glacier is known to be one of the fastest retreating glaciers in Antarctica. The climate is changing rapidly and icebergs frequently break off from these glaciers. This process of icebergs breaking off from glaciers is called calving and Scientist from the U.S. National Ice Center trackthese calving events. On February 9th 2020 radar images from Sentinel-1 satellites showed manyicebergs breaking off from the Pine Island glacier and floating into the Pine Island Bay. These glaciers are visible because ice floats when it freezes. This is particularly helpful to life as it insulates the water below and is home to a variety of animals. Which property of water is the reason that we can see icebergs float?a-cohesive nature of water allowing water to pull together b-capillary action allowing water to be absorbed against the pull of gravity c- waters versatility as a solventd- low density of ice due to expansion when freezing What new invention made the sea safer for sailors? Please Help... I'm doing an assignment and i need someone to help me . Cynthias favorite clothing store is having a 44% off sale. What fraction represents 44%? Write a informal letter to a relative about your day explain what you were doing when you met your friend ,describe what you did together ,say how you felt about the day How are the rock cycle and the water cycle related? Lin rode her bike 2 miles in 8 minutes. She rode at a constant speed. Complete the table to show the time it took her to travel different at this speed? How many times greater is the value of the digit 2 in 23.876 than the value of the digit 2 in 3.254 I need help solving it and I need a step by step explanation. how would high tariffs help america A mosquito beating its wingsproduces sound waves witha frequency of 700 Hz and awavelength of 0.5 m.frequency: f=700 Hzwavelength: X= 0.5 ma. Find: wave speed: ss=fb. Substitute:s = 700 x 0.5 = 350c. Determine the units:units of s = (units of f) x(units of X)(Hz) x (m)= (1/s) x (m) = m/s11. Use a SimpleEquation How fast are thesound waves of the beatingmosquito wings traveling?