Popping popcorn is a thermodynamic process. Assume the pot remains covered while popcorn is being popped and the contents of the pot are the system. Which of the following correctly describes some feature of the system or what happens to the system undergoing this thermodynamic process?A. W > 0.B. Q>0.C. Tincreases.D. AU < 0.E. Pincreases.F. V-constant.

Answers

Answer 1

Answer:

the answer is C

Explanation:

Mark me brainlest


Related Questions

Two loudspeakers are located 2.65 m apart on an outdoor stage. A listener is 19.1 m from one and 20.1 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20 Hz–20 kHz). The speed of sound in the air is 343 m/s. What are the three lowest frequencies that give minimum signal (destructive interference) at the listener's location?

Answers

Answer:

171.5Hz,514.5Hz and 857.5Hz

Explanation:

We are given that

Distance between two loudspeaker,d=2.65 m

Distance of listener from one end=19.1 m

Distance of listener from other end=20.1 m

[tex]\Delta L=20.1-19.1=1[/tex]m

Speed of sound,v=343m/s

For destructive interference

[tex]f_{min,n}=\frac{(n-0.5)v}{\Delta L}[/tex]

Using the formula  and substitute n=1

[tex]f_{min,1}=\frac{(1-0.5)\times 343}{1}=171.5Hz[/tex]

For n=2

[tex]f_{min,2}=\frac{(2-0.5)\times 343}{1}=514.5Hz[/tex]

For n=3

[tex]f_{min,3}=(3-0.5)\times 343=857.5Hz[/tex]

Hence, the three lowest frequencies that give minimum signal (destructive interference) at the listener's location is given by

171.5Hz,514.5Hz and 857.5Hz

Adiabatic Equation of State Derive the adiabatic equation of state (2.3.19) using particle conservation (2.3.7) and energy conservation (2.3.21), by assuming that the heat flow vector q and all collision terms in these equations are zero.

p=Cn^{\gamma } Equation 19

\frac{\partial n}{\partial t}+\bigtriangledown (nu)=G-L Equation 7

\bigtriangledown (\frac{3}{2}pu)=\frac{\partial }{\partial t}(\frac{3}{2}p)\mid c Equation 22

Answers

Answer:

Explanation:

jhgfhmhvmghmm

A 58.0 kg snow skier is on the top of 351 m high hill. After she has gone down a vertical distance of 142 m, what is her mechanical energy? Explain your answer (CER)!

Answers

Answer:

Explanation:

Initially skier is at a height of 351 m . Her kinetic enery will be nil because she is at rest . Her potential energy will be calculated as follows

potential energy = mgh where m is mass , h is height and g is acceleration due to gravity

potential energy = 58 x 9.8 x 351

= 199508 .4 J

Total mehanical energy = potential energy + kinetic energy

= 199508.4 J

According to conservation of mechanical energy , at the height of 142 m also total mechanical energy will be same . At this height some potential energy will be converted into kinetic energy but total of potential and kinetic energy will be same.

18. Compared to its weight on Earth, a 5 kg object on the moon will weigh A. the same amount. B. less. C. more.

Answers

Answer:

B. less

Explanation:

acceleration due to gravity on Earth, g = 9.8 m/s²

acceleration due to gravity on Moon, g = 1.6 m/s²

Given mass of the object as, m = 5 kg

Weight of an object is given as, W = mg

                                                         

Weight of the object on Earth, W = 5 x 9.8 = 49 N

Weight of the object on Moon, W = 5 x 1.6 = 8 N

Therefore, the object weighs less on the moon compared to its weight on Earth.

The correct option is "B. less"

A traffic light is weighing 200N hangs from a vertical cable tied to two other cables that are fastened to a support. The upper cable makes angles of 41° and 63° with the horizontal. Calculate the tension in each of the three cables.

Answers

Answer:

T₁ = 93.6 N , T₂ = 155.6 N , T₃ = 200 N

Explanation:

This is a balance exercise where we must apply the expressions for translational balance in the two axes

     ∑  F = 0

Suppose that cable t1 goes to the left and the angles are 41º with respect to the horizontal and cable t2 goes to the right with angles of 63º

decompose the tension of the two upper cables

          cos 41 = T₁ₓ / T1

          sin 41 = T₁y / T1

          T₁ₓ = T₁  cos 41

          T₁y= T₁  sin 41

for cable gold

           cos 63 = T₂ / T₂

           sin 63 = [tex]T_{2y}[/tex] / T₂

We apply the two-point equilibrium equation: The junction point of the three cables and the point where the traffic light joins the vertical cable.

Let's start by analyzing the point where the traffic light meets the vertical cable

              T₃ - W = 0

              T₃ = W

              T₃ = 200 N

now let's write the equations for the single point of the three wires

X axis

   - T₁ₓ + T₂ₓ = 0

  T₁ₓ = T₂ₓ

   T1 cos 41 = T2 cos 63

   T1 = T2 cos 63 / cos 41                (1)

y Axis

      [tex]T_{1y}[/tex] + T_{2y} - T3 = 0

       T₁ sin 41 + T₂ sin 63 = T₃          (2)

to solve the system we substitute equation 1 in 2

        T₂ cos 63 / cos 41 sin 41 + T₂ sin 63 = W

         T₂ (cos 63 tan 41 + sin 63) = W

         T₂ = W / (cos 63 tan 41 + sin 63)

We calculate

          T₂ = 200 / (cos 63 tan 41 + sin 63)

          T₂ = 200 / 1,2856

           T₂ = 155.6 N

we substitute in 1

            T₁ = T₂ cos 63 / cos 41

             T₁ = 155.6 cos63 / cos 41

             T₁ = 93.6 N

therefore the tension in each cable is

            T₁ = 93.6 N

             T₂ = 155.6 N

             T₃ = 200 N

with one example each , state and explain five outputs derieved from a business policy​

Answers

so state would be the answer hope that helps

What is the radius of a nucleus of an atom?

Answers

Answer:

i think its 1-10 ´ 10-15 m

Explanation:

It is found that nuclear radii range from 1-10 ´ 10-15 m. This radius is much smaller than that of the atom, which is typically 10-10 m. Thus, the nucleus occupies an extremely small volume inside the atom. The nuclei of some atoms are spherical, while others are stretched or flattened into deformed shapes.

Calculate the speed of a wave on a guitar string which has a mass of 55 g and a length of 30 cm if the tension in the string is 200 N

Answers

Answer:

33 m/s

Explanation:

v = √(T / (m/L))

where v is the velocity,

T is the tension,

and m/L is the mass per length.

v = √(200 N / (0.055 kg / 0.30 m))

v = 33 m/s

If a ball is thrown vertically upward with a velocity of 160 ft/s, then its height after t seconds is s = 160t − 16t2. (a) What is the maximum height reached by the ball? ft (b) What is the velocity of the ball when it is 384 ft above the ground on its way up? (Consider up to be the positive direction.) ft/s What is the velocity of the ball when it is 384 ft above the ground on its way down?

Answers

Answer:

a) h_max = 400ft

b) v = 1024 ft/s

Explanation:

The general equation of a motion is:

[tex]s(t)=v_ot-\frac{1}{2}gt^2[/tex]  (1)

You have the following equation of motion is given by:

[tex]s(t)=160t-16t^2[/tex]  (2)

You compare both equations (1) and (2) and you obtain:

vo: initial velocity = 160ft/s

g: gravitational acceleration = 32ft/s

a) The maxim height reached by the ball is given by:

[tex]h_{max}=\frac{v_o^2}{2g}=\frac{(160ft/s)^2}{64ft/s^2}=400ft[/tex]

b) The velocity is given by:

[tex]v^2=v_o^2-2gh\\\\v=\sqrt{(160ft/s)^2-2(32ft/s^2)(384ft)}=1024ft/s[/tex]

Answer:

a) Smax = 400 ft

b) v = 32 ft/s

c) v = - 32 ft/s

Explanation:

(a)

The function given for the height of ball is:

s = 160 t - 16 t²

Therefore, in order to find the time to reach maximum height (in-flexion point), we must take the derivative with respect to t and set it equal to zero:

Therefore,

160 - 32 t = 0

32 t = 160

t = 160/32

t  = 5 sec

Therefore, maximum distance is covered at a time interval of 5 sec.

Smax = (160)(5) - (16)(5)²

Smax = 800 - 400

Smax = 400 ft

b)

First we calculate the time at which ball covers 384 ft

384 = 160 t - 16 t²

16 t² - 160 t + 384 = 0

Solving Quadratic Equation:

Either:

t = 6 sec

Or:

t = 4 sec

Since, the time to reach maximum height is 5 sec. Therefore, t < 5 sec

Therefore,

t = 4 sec

Now, we find velocity at 4 sec by taking derivative od s with respect to t at 4 sec:

v = 160 - 32 t

v = 160 - (32)(4)

v = 32 ft/s

c)

Since, t = 6 s > 5 s

The second value of t = 6 sec must correspond to the instant when the ball is 384 ft above the ground while traveling downward.

Hence, velocity at that time will be:

v = 160 - (32)(6)

v = -32 ft/s

Negative sign due to downward motion.

A small block of mass 20.0 grams is moving to the right on a horizontal frictionless surface with a speed of 0.540 m/s. The block has a head-on elastic collision with a 40.0 gram block that is initially at rest. Since the collision is head-on, all velocities lie along the same line, both before and after the collision. (a) What is the speed of the 20.0 gram block after the collision

Answers

Answer:

  0.180 m/s

Explanation:

Solving the equations for conservation of momentum and energy for an elastic collision gives ...

  v₁' = ((m₁ -m2)v₁ +2m₂v₂)/(m₁ +m₂) . . . . v₁' is the velocity of m₁ after collision

__

Here, we have (m₁, m₂, v₁, v₂) = (20 g, 40 g, 0.540 m/s, 0 m/s).

Substituting these values in to the equation for v₁', we have ...

  v₁' = ((20 -40)(0.540) +2(40)(0))/(20 +40) = (-20/60)(0.540)

  v₁' = -0.180 . . . m/s

The speed of the 20 g block after the collision is 0.180 m/s to the left.

A projectile is fired with an initial speed of 37.7 m/s at an angle of 41.2° above the horizontal on a long flat firing range. Determine the maximum height reached by the projectile.

Answers

Answer:

h = 31.46 m

Explanation:

We have,

Initial speed of a projectile is 37.7 m/s

It was projected at an angle of 41.2° above the horizontal on a long flat firing range.

It is required to find the maximum height reached by the projectile. The formula used to find it is given by :

[tex]h=\dfrac{u^2\sin^2\theta}{2g}[/tex]

Plugging all the known values,

[tex]h=\dfrac{(37.7)^2\times \sin^2(41.2)}{2\times 9.8}\\\\h=31.46\ m[/tex]

So, the maximum height reached by the projectile is 31.46 m.

An object on a number line moved from x = 15 cm to x = 165 cm and then

moved back to x = 25 cm, all in a time of 100 seconds.

What was the average velocity of the object?

Answers

Answer:

v_avg = 2.9 cm/s

Explanation:

The average velocity of the object is the sum of the distance of all its trajectories divided the time:

[tex]v_{avg}=\frac{x_{all}}{t}[/tex]

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm

Then, x_all = 150cm + 140cm = 290cm

The average velocity is, for t = 100s

[tex]v_{avg}=\frac{290cm}{100s}=2.9\frac{cm}{s}[/tex]

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s

Answer:

The average velocity of the object is 0.1cm/s

Explanation:

Given that the object travels from point 15cm to 165cm and back to 25cm within 100 seconds

The average velocity is calculated as thus.

Average Velocity = ∆D/t

Where ∆D represent the displacement.

The displacement is calculated as follows.

∆D = End point - Start Point.

From the question, the end and start point are 25cm and 15cm respectively.

Hence,

∆D = 25cm - 15cm

∆D = 10cm.

t = 100 seconds

So, Average Velocity = 10cm/100s

Average Velocity = 0.1cm/s

Hence, the average velocity of the object is 0.1cm/s

As part of an exercise program, a woman walks south at a speed of 2.00 m/s for 60.0 minutes. She then turns around and walks north a distance 3000 m in 25.0 minutes (a) What is the woman's average velocity during her entire motion?

Answers

Answer:

0.824m/s

Explanation:

To calculate the average velocity we have to find the total distance and the total time

We have to find the distance and time in each motions

FIRST MOTION

The values given are

Speed= 2m/s , t = 60minutes

The time has to be converted to seconds. 60×60 = 3600seconds

Distance= speed×time

= 2× 3600

= 7200m

In the first motion the distance is 7200m and the time is 3600seconds

SECOND MOTION

The values given are

Distance= 3000m

Time= 25 mins to seconds

= 25×60

= 1500 seconds

In the second motion distance is 3000m and the time is 1500 seconds

The total distance can be calculated by applying the formular ( d1-d2) since she moved in an opposite direction

Total distance= 7200-3000

= 4200m

The total time (t1+t2) = 1500+3600

= 5100 seconds

Therefore, average velocity is calculated by applying the formular

Total distance/ Total time

= 4200/5100

= 0.824m/s South

Hence the average velocity is 0.824m/s South.

Answer:

The woman's average velocity during her entire motion is 2 m/s

Explanation:

Given;

initial speed of the woman, u =  2.00 m/s

initial time taken, t₁ = 60 minutes = 3600 seconds

initial displacement of the woman, x₁ = ?

final displacement of the woman, x₂ = 3000 m north

final time taken , t₂ = 25.0 minutes = 1500 seconds

The woman's average velocity during her entire motion:

initial displacement of the woman, x₁ = u x t₁  = 2.00 m/s x 3600 seconds

                                                                           = 7200 m South

[tex]Average \ velocity = \frac{\delta X}{\delta t} = \frac{X_1-X_2}{t_1-t_2} \\\\V_{avg.} = \frac{7200-3000}{3600-1500} = \frac{4200}{2100} = 2 \ m/s[/tex]

Therefore, the woman's average velocity during her entire motion is 2 m/s

You are pushing a cart across the room, and the cart has wheels at the front and the back. Your hands are placed on top of the cart at the center (left to right) of the top edge, pushing horizontally. There is friction between the wheels and the floor. Is the normal force between the floor and the front wheels greater than, smaller than, or equal to the normal force between the floor and the rear wheels? a) The force on the front wheels must be smaller than the force on the rear wheels. b) The force on the front wheels must be equal to the force on the rear wheels. c) The force on the front wheels must be greater than the force on the rear wheels.

Answers

Answer:

The normal force is the force that the floor does as a reaction of the gravitational force that an object does against the floor (is the resistance that objects have when other objects want to move trhough them, and the force comes by the 3rd Newton's law, and this is specially used in cases where the first object is fixed, like walls or the floor). With this in mind, the point in where the normal force will be greater is the point that is closer to the center of mass of the object (the point with more mass)

If the wheels are in the extremes of the object, and the center of mass is in the middle of the object, the normal force will be equal. Now if for example, you put a little mass in one end of the object, now the center of weight displaces a little bit and is not centered, and the side is where you put the weight on will receive a bigger normal force from the floor than the other side.

The force on the front and rear wheels can be determined by finding the

force acting under equilibrium conditions.

The normal reaction between the floor and the front wheel is larger. The

correct option is c) The force on the front wheels must be greater than the

force on the rear wheels.

Reasons:

The forces acting on the wheels are;

Vertical forces acting on the cart:

The weight of the cart acting on the floor

The normal reaction of the floor on the wheels

The horizontal acting on the cart:

Pushing force acting horizontally

Friction force acting in the reverse direction

At equilibrium, the cart does not tip over

Sum of moment about the rear wheel = [tex]\mathbf{W \times \dfrac{d}{2} + F \times h - N_{front} \times d} = 0[/tex]

Where;

h = The height of the cart

d = depth of the cart

[tex]N_{front}[/tex]  = The normal reaction at the front wheels

Therefore;

[tex]\displaystyle N_{front} = \frac{W \times \dfrac{d}{2} + F \times h}{d} = \mathbf{ \frac{W}{2} + \frac{F \times h}{d}}[/tex]

Sum of moment about the front wheel = [tex]\mathbf{ F \times h + N_{rear} \times d - W \times \dfrac{d}{2} } = 0[/tex]

Therefore;

[tex]\displaystyle N_{rear} = \frac{W \times \dfrac{d}{2} - F \times h}{d} = \mathbf{ \frac{W}{2} - \frac{F \times h}{d}}[/tex]

Which gives;

[tex]\displaystyle N_{front} = \mathbf{ \displaystyle N_{rear} + 2 \times \frac{F \times h}{d}}[/tex]

[tex]\displaystyle 2 \times \frac{F \times h}{d} > 0[/tex]

Therefore;

[tex]\displaystyle N_{front} > \displaystyle N_{rear}[/tex]

The correct option is c) The force on the front wheels must be greater than

the force on the rear wheels.

Learn more here:

https://brainly.com/question/17574217

The potential in a region between x = 0 and x = 6.00 m is V = a + bx, where a = 10.6 V and b = -4.90 V/m. (a) Determine the potential at x = 0. 10.6 Correct: Your answer is correct. V Determine the potential at x = 3.00 m. V (b) Determine the magnitude and direction of the electric field at x = 0. magnitude 4.9 Correct: Your answer is correct. V/m direction +x Correct: Your answer is correct. Determine the magnitude and direction of the electric field at x = 3.00 m. magnitude V/m direction

Answers

Answer:

a) 10.6V

b) E = 4.9V/m, +x direction

c) E = 4.9V/m, +x direction

Explanation:

You have the following function:

[tex]V=a+bx[/tex]  (1)

for the potential in a region between x=0 and x=6.00 m

a = 10.6 V

b = -4.90V/m

[tex]V=10.6V-4.90\frac{V}{m}x[/tex]

a) for x=0 you obtain for V:

[tex]V=10.6V-4.90\frac{V}{m}(0m)=10.6V[/tex]

b) The relation between the potential difference and the electric field can be written as:

[tex]E=-\frac{dV}{dx}=-b=-(-4.9V/m)=4.9V/m[/tex]  (2)

the direction is +x

c) The electric field is the same for any value of x between x=0 and x=6m.

Hence,

E = 4.9V/m, +x direction

A box is being pulled to the right. What is the magnitude of the Kinect frictional force?

Answers

The answer to this question is A - 25 N

The so-called "force" of friction always acts exactly opposite to the direction in which an object is moving.  So for this question, since the box is moving to the right, the "force" of friction is acting toward the left.

There's not enough information given in the question to determine its magnitude.

At the same temperature, two wires made of pure copper have different resistances. The same voltage is applied at the ends of each wire. The wires may differ in:________
a. length.b. cross-sectional area.c. resistivity.d. amount of electric current passing through them

Answers

Answer:

A and B are true

Explanation:

C and D are false

Answer:

The answer is the length, cross-sectional area, and the amount of electric current passing through them.

So,

a

b

d

are the correct answers.

Explanation:

I hope this helps future Physics students who are also struggling...

If you have any questions let me know!!

This answer is 100% correct

An atom with 19 protons and 18 neutrons is an

Answers

K+ js an atom with 19 protons and 18 neutrons.

A ball is fired from a toy gun with an initial speed of 7.00 m/s with the gun aimed at 300 upward with respect to the horizontal. The point of firing is 1.32 m above the horizontal floor. What is the horizontal component of the ball's initial velocity?

Answers

Answer:

6.0621 m/s

Explanation:

we all know that horizontal component of the velocity in projectile motion is

= u cosα

u= initial speed of 7.00 m/s of the gun.

α = angle of the initial velocity with the horizontal = 30°

therefore, horizontal component of the ball's initial velocity = 7×cos30°

[tex]7\times\frac{\sqrt{3} }{2} \\=6.0621 \text{m/s}[/tex]

Which best describes earth's magnetic field lines?​

Answers

Answer:

The field lines go out of Earth near Antarctica, enter Earth in northern Canada, and are not aligned with the geographic poles.

Explanation:

Answer: the field lines go out of earth near the north pole, enter earth in the south pole, and are not aligned with the geographic poles.

Explanation: just took the test on edge 2020.

Suppose there is a uniform magnetic field, B, pointing into the page (so your index finger will point into the page). If the velocityof a proton is straight up(thumb pointing up) then RHR2 shows that the force points to the left. What would the direction of the force be if the velocitywere a) down b) to the rightc) to the leftd) into the pagee) out of the page

Answers

Answer:

Explanation:

We shall show all given data in vector form and calculate the direction of force with the help of following formula

force F = q ( v x B )

q is charge , v is velocity and B is magnetic field.

Given B = - Bk ( i is  right  , j is  upwards  and k is straight up the page  )

v = v j

F = q ( vj x - Bk )

= -Bqvi

The direction is towards left .

a ) If velocity is down

v = - v j

F = q ( - vj x - bk )

= qvB i

Direction is right .

b ) v = v i

F = q ( vi x - Bk )

= qvB j

force is upwards

c ) v = - vi

F = q ( -vi x - Bk )

= -qvBj

force is downwards

d ) v = - v k

F = q( - vk x -Bk  )

= 0

No force will be created

e ) v =  v k

F = q(  vk x -Bk  )

= 0

No force will be created  

ISC 152
Describe the
two major sources of energy and
give two
examples
each

Answers

HEYA!!

Here's your Answer:

Energy is the power we use for transportation, for heat and light in our homes and for the manufacture of all kinds of products. There are two sources of energy: renewable and non-renewable energy

RENEWABLE ENERGY: Renewable energy, often referred to as clean energy, comes from natural sources or processes that are constantly replenished. For example, (sunlight or wind keep shining and blowing), even if their availability depends on time and weather.

NON-RENEWABLE ENERGY:Non-renewable energy comes from sources that will run out or will not be replenished in our lifetimes—or even in many, many lifetimes.

Most non-renewable energy sources are (fossil fuels: coal, petroleum, and natural gas).

HOPE IT HELPS!!!

A plane travels 2.5 KM at an angle of 35 degrees to the ground, then changes direction and travels 5.2 km at an angle of 22 degrees to the ground. What is the magnitude and direction of the planes total displacement??

Answers

Answer:

7.7 km 26°

Explanation:

The total x component is:

x = 2.5 cos(35°) + 5.2 cos(22°) = 6.87

The total y component is:

y = 2.5 sin(35°) + 5.2 sin(22°) = 3.38

The magnitude is:

d = √(x² + y²)

d = 7.7 km

The direction is:

θ = atan(y/x)

θ = 26°

A natural force of attraction exerted by the earth upon objects, that pulls
objects towards earth's center is called

Answers

A natural force of attraction exerted by the earth upon objects, that pulls objects towards earth's center is called Gravitational force .

If an object is in equilibrium, which of the following statements is not true? A) The velocity is constant. B) The object must be at rest. C) The net force acting on the object is zero. D) The acceleration of the object is zero. E) The speed of the object remains constant.

Answers

B) since the object does not have to be only at rest to maintain equilibrium

When the object is in equilibrium so the statement i.e. not true should be that object should be at rest.

Newton second law of motion:

In the case when the net force of an object should be zero at the time when it is in equilibrium. In the case when the net force should be zero the acceleration should also be zero. And, if the acceleration if zero so the speed and velocity should remain the same. So for maintaining the equilibrium, the object should not have to be only at rest.

learn more about newton here: https://brainly.com/question/18453410

Four cubes of the same volume are made of different materials: lead (density 11,300 kg/m3), aluminum (density 2700 kg/m3), wood (density 800 kg/m3), and Styrofoam (density 50 kg/m3). You place the cubes in a large container filled with water.Rank the buoyant forces that the water exerts on the cubes from largest to smallest.Rank from largest to smallest. To rank items as equivalent, overlap them.

Answers

Answer:

Lead > Aluminium > Wood > Styrofoam

Explanation:

Buoyant force is described by the Archimedes's Principle, which states that buoyant force is equal to the weight of the fluid displaced by the submerged object. By Newton's Laws, the buoyant force is represented by the following equation of equilibrium:

[tex]\Sigma F = F_{D} - W_{cube} = 0[/tex]

[tex]F_{D} = W_{cube}[/tex]

[tex]F_{D} = \rho_{cube} \cdot g \cdot V_{cube}[/tex]

Where:

[tex]\rho_{cube}[/tex] - Density of the cube, measured in kilograms per cubic meter.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

[tex]V_{cube}[/tex] - Volume of the cube, measured in cubic meters.

Let suppose that volume of the cube is known. Given that [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], the buoyant force is computed for each material:

Lead ([tex]\rho_{cube} = 11,300\,\frac{kg}{m^{3}}[/tex])

[tex]F_{D} = \left(11,300\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot V_{cube}[/tex]

[tex]F_{D} = 110,819.1V_{cube}[/tex]

Aluminium ([tex]\rho_{cube} = 2,700\,\frac{kg}{m^{3}}[/tex])

[tex]F_{D} = \left(2,700\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot V_{cube}[/tex]

[tex]F_{D} = 26478.9V_{cube}[/tex]

Wood ([tex]\rho_{cube} = 800\,\frac{kg}{m^{3}}[/tex])

[tex]F_{D} = \left(800\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot V_{cube}[/tex]

[tex]F_{D} = 7845.6V_{cube}[/tex]

Styrofoam ([tex]\rho_{cube} = 50\,\frac{kg}{m^{3}}[/tex])

[tex]F_{D} = \left(50\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot V_{cube}[/tex]

[tex]F_{D} = 490.35V_{cube}[/tex]

Therefore, the buoyant forces that the water exerts on the cubes from largest to smallest corresponds to: Lead > Aluminium > Wood > Styrofoam.

The kinetic energy of a ball with a mass of 0.5 kg in a velocity of 10 meterss

Answers

Answer:

The kinetic energy of a ball with a mass of 0.5 kg and a velocity of 10 m/s is  J.

Explanation:

Thus the kinetic energy of the ball is 25 J. The unit Joule (J) is the same as kgm^2/s^2 and is the SI unit for kinetic energy.

Hope this helps.

To Da
The radius of a circular track is 7 m. What will be the speed of a scooter, if it takes 20 seconds to complete one round of the
track?
published yet
04
published yet
A: 2.2 m/s
published yet
B: 22 m/s
02
published yet
C: 0.22 m/s
D: 022m/s
Previous
Next
Skip
10
12
13
16
17
25
24/05/20
Answered Questio
Skipped Question
Unseen Question
Pls help

Answers

Answer:

A

Explanation:

Firstly, recall the equation for the circumference of a circle (C=2*pi*r). Then apply the formula speed = distance/time.

Answer:

i see they did already i am just supporting them

Answer:

A

Explanation:

Firstly, recall the equation for the circumference of a circle (C=2*pi*r). Then apply the formula speed = distance/time.

The decrease of PE for a freely falling object equals its gain in KE, in accord with the conservation of energy. By simple algebra, find an equation for an object's speed v after falling a vertical distance h. Do this by equating KE to its change of PE.

Answers

Answer:

[tex]v = \sqrt{20h} [/tex]

Explanation:

The potential energy (PE) we are looking here is gravitational potential energy (GPE).

GPE= mgh,

where m is the mass of an object,

g is the gravitational field strength

h is the height of the object

KE= ½mv²,

where m is the mass and v is the velocity

loss in GPE= gain in KE

mgh= ½mv²

gh= ½v² (divide by m throughout)

Assuming that the object is on earth, then g= 10N/Kg

½v²= 10h (substitute g=10)

v²= 20h (×2 on both sides)

v= √20h (square root both sides)

Two boats start together and race across a 50-km-wide lake and back. Boat A goes across at 50 km/h and returns at 50 km/h. Boat B goes across at 25 km/h, and its crew, realizing how far behind it is getting, returns at 75 km/h. Turnaround times are negligible, and the boat that completes the round-trip first wins.

Required:
a. Which boat wins?
b. What is the average velocity of the winning boat?

Answers

Answer:

Boat A wins and 50km/hr

Explanation:

To solve this problem we need to calculate the time required for both boats to make the round trip.

For Boat A.

The time required for the first trip =distance/ speed = 50/50 = 1h

For the return trip the time is same since it's the same distance on the same speed.

Hence the time taken for boat A to make the round trip is 2hrs.

For boat B,

The time required for the first trip =distance/ speed = 50/25 = 2h

The time for the return trip is;

=distance/ speed = 50/75 = 2/3h= 2/3×60= 40mins

By comparing both time.

Boat A requires less time hence Boat A wins.

2.The average velocity of the winning boat is the velocity of boat A.

Which is total distance/ total time for the trip.

100km/2hrs = 50km/hr

boat A would win the race and the average velocity of the winning boat would be 50 km/h

What is Velocity?

The total displacement covered by any object per unit of time is known as velocity. It depends on the magnitude as well as the direction of the moving object.

As given in the problem Two boats start together and race across a 50-km-wide lake and back. Boat A goes across at 50 km/h and returns at 50 km/h. Boat B goes across at 25 km/h, and its crew, realizing how far behind it is getting, returns at 75 km/h.

Turnaround times are negligible, and the boat that completes the round-trip first wins

Average velocity of the boat A = ( 50 + 50 ) / 2

                                                              = 50 km /h

Thus, boat A would win the race and the average velocity of the winning boat would be  50 km/h

Learn more about Velocity from here,

brainly.com/question/18084516

#SPJ2

Other Questions
Who is the artist to this album-cover? In general, the more per square activities individuals do, _______. A. The more intense the exercise needs to be. B. The more money they would save on dieting. C. The more television they will be able to watch. D. The more benefit they will receive some exercise. Please Help With Question ASAP ! john has 5 apples. Cina has 5 times as john. how many apples does Cina have Sara is a drummer in her school is marching band she wants to make a geometrically similar model of a snare drum for her stuffed animals. To find the dimensions she should use to make a cylindrical model with a scale of 1 : 4, Sara measures the radius and height of a snare drum and multiplies each dimension by 1/2. Which statement is true?A. A cylinder with Saras dimensions will be geometrically similar, and the scale factor will be 1:4B. A cylinder with Saras dimensions will be geometrically similar, but the scale factor will be 1:2C. A cylinder with Saras dimensions will be geometrically similar, but the scale factor will be 1:8D. A cylinder with Saras dimensions will not be geometrically similar Suppose a low-frequency sound source is placed to the right of a person, whose ears are approximately 13 cm apart, and the speed of sound generated is 340 m/s. How long (in s) is the interval between when the sound arrives at the right ear and the sound arrives at the left ear Sayid drew an energy pyramid. What does each section of the triangle represent?a trophic levela food chaina type of producer A form of nonviolent protest where people stop buying a product? The human body has a normal temperature of 98.6F. Doctors will get worried if a sick patient has a temperature that varies from the normal by more than 3F. Create an absolute value inequality and solve it to determine what body temperatures would be considered unhealthy. Hi MikeIve just been reading an interesting article in a holidaybrochure,its about Florence,Italy.According to Julie,at work,its a great city to visit,its got something for everyone.Id really like to go for a short break,would you be interested?Four or five nights in June would be perfect,as far as Imconcerned.If youre interested,Icould book it tonight. Let me know as soon as possible. A corporate bond has a face value of $1,000 and a coupon rate of 9.5%. The bond matures in 12 years and has a current market price of $1,100. If the corporation sells more bonds it will incur flotation costs of $48 per bond. If the corporate tax rate is 35%, what is the after-tax cost of debt capital Which situation is an example of conflict?A. An old man remembers how he met his wife.B. A young woman gets a job at her father's office.C. Two children spend an afternoon playing chess.D. Two men are in love with the same woman.SUBMIT You are driving to visit a friend in another state who lives 440 miles away. You are driving 55 miles per hour and have already driven 275 miles. Write and solve an equation to find how much longer in hours you must drive to reach your destination. A. 55h + 275 = 440 ; h=3 B.55h - 275 = 440 ; h= 13 C.440h -275 = 55 ; h =0.75 D. 55h +275h = 440 ; h=1.3 asssssapppp please need it now Triangle ABC and triangle LMN are similar and have the same orientation. The endpoints of the hypotenuse of triangle ABC are A(2, -2) and C(8, -5). The hypotenuse of triangle LMN is on the same line as the hypotenuse of triangle ABC and is one-third the length of AC.What is the the equation of the line that the hypotenuse of triangle LMN lies on?On the hypotenuse of triangle LMN, if coordinate L is at point (-6, 2), coordinate N is at point ( , ). I need help and I need explanation plz Work out the size of angle x Move values into the boxes to create an equation that represents "8 times h 24."h81624 32 why isnt pluto a planet? 2.How does the poem explore why it's important to look at something in a different light?Think of a negative memory and try to find a moment of positivity within that memory. Whyshould we try to remember the positive things in life?