PLEASE HELP ME, A person has a 340 g can of organic frozen apple juice concentrate. In order to make the most dilute solution, which amount of water should he add? A. 709 mL B. 1064 mL C. 1419 mL D. 1774 mL

Answers

Answer 1
The answer is D, by adding the most water you will get the most diluted solution.

Related Questions

17. A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?

Answers

Answer:

The monkey will get hit by the dart. This is because when the dart is fired the force of gravity makes it fall from its original position. The monkey also has the same fall from the branches which means they will both be falling at the same gravitational rate.

This will eventually make the monkey to get hit by the dart.

A 64.7 cm long straight section of wire is located entirely inside a uniform magnetic field of |B| = 0.370 T. The wire is perpendicular to the direction of the magnetic field. When a current runs through the wire a magnetic force of |F| = 0.110 N acts on that section of wire. Calculate the size of the current.

Answers

Answer:

The current is  [tex]I = 0.4595 \ A[/tex]

Explanation:

From the question we are told that

    The length of the wire is  [tex]L = 64.7 \ cm = 0.647 \ m[/tex]

    The magnetic field is  [tex]B = 0.370 \ T[/tex]

      The magnetic force is  [tex]F = 0.110 \ N[/tex]

Generally the magnetic force exerted by the field is mathematically represented as

      [tex]F = IL B sin \theta[/tex]

Making I the subject we have

      [tex]I = \frac{F}{LB \ sin\theta}[/tex]

The angle here is  90° since the wire is perpendicular  to the direction of the magnetic field

      Substituting values

     [tex]I = \frac{0.110}{ (0.370) * 0.647 \ sin(90)}[/tex]

   [tex]I = 0.4595 \ A[/tex]

Monochromatic light is incident on (and perpendicular to) two slits separated by 0.200 mm, which causes an interference pattern on a screen 613 cm away. The light has a wavelength of 656.3 nm. (a) What is the fraction of the maximum intensity at a distance of 0.600 cm from the central maximum of the interference pattern

Answers

Answer:

I = 0.636*Imax

Explanation:

(a) To find the fraction of the maximum intensity at a distance y from the central maximum you use the following formula:

[tex]I=I_{max}cos^2(\frac{\pi d}{\lambda L}y)[/tex]   (1)

I: intensity of light

Imax: maximum intensity of light

d: separation between slits = 0.200mm = 0.200 *10^-3 m

L: distance from the screen = 613cm = 0.613 m

y: distance to the central peak of the interference pattern

λ: wavelength of light = 656.3 nm = 656.3 *10^-9 m

You replace the values of all variables in the equation (1):

[tex]I=I_{max}cos^2(\frac{\pi (0.200*10^{-3}m)}{(656.3*10^{-9}m)(0.613m)}0.600m)\\\\I=I_{max}cos^2(937.06)=0.636I_{max}[/tex]

Hence, the fraction of the maximum intensity is I = 0.636*Imax

9. Santa brings a special baby a bouncy swing. The child bounces in a harness, with a spring constant k, and is suspended off of the ground. a. If the spring stretches x1 = 0.27 m from equilibrium while supporting an 7.15-kg child, what is its spring constant, in newtons per meter?

Answers

Answer:

259.52N

Explanation:

Force initiated on a spring that causes an extension is related by the expression below;

F= K×e

Where F is the Force

K is the spring constant

e is the extension caused by the spring.

By change of subject formula for K;

K = F/e

Now F is the same as weight and is given by mass× acceleration. In this case acceleration is g=9.8m/s2; this is because the child's mass is going to be under the influence of gravity as it swings up the harness}

Hence W =7.15×9.8=70.07N

Hence K = 70.07/0.27 =259.5185N/m

=259.52N/m to 2 decimal place.

An advertisement for a new fish food claims that lab studies show that fish grew three inches in three weeks while eating the food. Travis wondered if the food was worth the extra cost. To evaluate the claim in the advertisement, Travis should

Answers

Check the data for the control group to see how much the fish grew without the new food.

Answer:

look at the data for the control group to see how much the fish grew without the new food.

Explanation:

i got it right

A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the central plane 0.9 m above the ground and 1.7 m behind the front axle. When moving on the level at 90 km/h the brakes applied and it comes to a rest in a distance of 50 m.
Calculate the normal reactions at the front and rear wheels during the braking period and the least coefficient of friction required between the tyres and the road. (Assume g = 10 m/s2)​

Answers

Answer:

normal reaction, front: 11,175 Nnormal reaction, rear: 6,825 Nminimum coefficient of friction: 0.625

Explanation:

The speed in meters per second is ...

  (90 km/h)(1000 m/km)(1 h/(3600 s)) = 25 m/s

The braking acceleration can be found from ...

  a = v²/(2d) = (25 m/s)²/(2×50 m) = 6.25 m/s²

Then the braking force is ...

  F = Ma = (1800 kg)(6.25 m/s²) = 11,250 N

The torque on the center of gravity is ...

  T = (11,250 N)(0.90 m) = 10,125 N·m

__

If we let x and y represent the normal forces on the front and rear wheels, respectively, then we have ...

  x + y = (10 m/s²)(1800 kg) = 18000 . . . . . newtons

  1.7x -1.3y = 10,125 . . . . . . . . . . . . . . . . . . . newton-meters

The latter equation balances the torque due to the wheel normal forces with the torque due to braking forces.

Multiplying the first equation by 1.3 and adding that to the second, we have ...

  3.0x = (1.3)(18,000) + 10,125

  x = 33,525/3 = 11,175 . . . . . . . . . . . newtons normal force on front tyres

  y = 18000 -11175 = 6,825 . . . . . . . .newtons normal force on back tyres

The least coefficient of friction is the ratio of horizontal to vertical acceleration, 6.25/10 = 0.625.

Beginning from rest when = 20°, a 35-kg child slides with negligible friction down the sliding board which is in the shape of a 2.5-m circular arc. Determine the tangential acceleration and speed of the child, and the normal force exerted on her (a) when = 30° and (b) when = 90°

Answers

Answer:

a) [tex]a_{T}=8.50m/s^{2}[/tex], [tex]v_{T}=2.78 m/s[/tex] and [tex]N=279.83N[/tex]

b) [tex]a_{T}=0m/s^{2}[/tex], [tex]v_{T}=5.68 m/s[/tex] and [tex]N=795.2N[/tex]

Explanation:

a)

In order to solve this problem we need to start by drawing a diagram of what the problem looks like: See attached picture. Next, we can start by finding the initial height of the child which will happen at an angle of 20°. We can find this by subtracting the distance from the highest point and the initial point from the radius of the circle so we get:

[tex]h_{0}=2.5m-h_{1}[/tex]

so we get:

[tex]h_{1}=2.5m(sin (20^{o}))[/tex]

[tex]h_{1}=0.855m[/tex]

so

[tex]h_{0}=2.5m-h_{1}[/tex]

[tex]h_{0}=2.5m-0.855m[/tex]

[tex]h_{0}=1.645m[/tex]

once we got this value, we can find the final height the same way. This time the angle is 30° so we get:

[tex]h_{f}=2.5m-h_{2}[/tex]

[tex]h_{f}=2.5m-2.5m(sin 30^{o}))[/tex]

[tex]h_{f}=1.25m[/tex]

Once we have these heights, we can go ahead and use an energy balance equation to find the velocity at 30° so we get:

[tex]U_{0}+K_{0}=U_{f}+K_{f}[/tex]

the initial kinetic energy is zero because its initial velocity is zero too, so the equation simplifies to:

[tex]U_{0}=U_{f}+K_{f}[/tex]

so now we substitute with the corresponding formulas:

[tex]mgh_{0}=mgh_{f}+\frac{1}{2}mv_{f}^{2}[/tex]

if we divided both sides of the equation by the mass, then the equation simplifies to:

[tex]gh_{0}=gh_{f}+\frac{1}{2}v_{f}^{2}[/tex]

and now we can solve for the final velocity so we get:

[tex]v_{f}=\sqrt{2g(h_{0}-h_{f}}[/tex]

and we can now substitute values:

[tex]v_{f}=\sqrt{2(9.81m/s^{2})(1.645m-1.25m)}[/tex]

which solves to:

[tex]v_{f}=2.78m/s[/tex]

which is our first answer. Once we got the velocity at 30° we can find the other data the problem is asking us for:

We can build a free body diagram (see attached  picture) and do a balance of forces so we get:

[tex]\sum{F_{x}}=ma_{T}[/tex]

in this case we only have one x-force which is the x-component of the weight, so we get that:

[tex]w_{x}=ma_{T}[/tex]

so we get:

[tex]mgcos\theta=ma_{T}[/tex]

and solve for the tangential acceleration so we get:

[tex]a_{T}=gcos\theta[/tex]

[tex]a_{T}=9.81m/s^{2}*cos(30^{o})[/tex]

[tex]a_{t}=8.50m/s^{2}[/tex]

Now we can find the centripetal acceleration by using the formula:

[tex]a_{c}=\frac{V_{T}^{2}}{R}[/tex]

[tex]a_{c}=\frac{(2.78m/s)^{2}}{2.5m}[/tex]

so we get:

[tex]a_{c}=3.09m/s^{2}[/tex]

Next, we can find the normal force which is found by doing a sum of forces on y, so we get:

[tex]\sum{F_{y}}=ma_{c}[/tex]

so we get:

[tex]N-w_{y}=ma_{c}[/tex]

and we solve for the normal force so we get:

[tex]N=ma_{c}+w_{y}[/tex]

and substitute:

[tex]N=ma_{c}+mg sin\theta[/tex]

when factoring we get:

[tex]N=m(a_{c}+g sin\theta)[/tex]

and we substitute:

[tex]N=(35kg)(3.09m/s^{2}+9.81m/s^{2} sin30^{o})[/tex]

which yields:

N=279.83N

b)

The procedure for part b is mostly the same with some differences due to the angle. First:

[tex]h_{0}=1.645m[/tex]

[tex]h_{f}=0m[/tex]

so

[tex]U_{0}+K_{0}=U_{f}+K_{f}[/tex]

in this case the initial kinetic energy is zero because the initial velocity is zero and the final potential energy is zero because the final height is zero as well, so the equation simplifies to:

[tex]U_{0}=K_{f}[/tex]

so we get:

[tex]mgh_{0}=\frac{1}{2}mv_{f}^{2}[/tex]

so we solve for the final velocity so we get:

[tex]v_{f}=\sqrt{2gh_{0}}[/tex]

and we substitute:

[tex]v_{f}=\sqrt{2(9.81m/s^{2})(1.645m)}[/tex]

[tex]v_{f}=5.68m/s[/tex]

according to the free body diagram we get that:

[tex]a_{T}=gcos\theta[/tex]

[tex]a_{T}=9.81m/s^{2}(cos 90^{o})[/tex]

which yields:

[tex]a_{T}=0[/tex]

we can also find the centripetal acceleration, so we get:

[tex]a_{c}=\frac{V_{T}^{2}}{R}[/tex]

[tex]a_{c}=\frac{(5.68m/s)^{2}}{2.5m}[/tex]

so we get:

[tex]a_{c}=12.91m/s^{2}[/tex]

and we can do a sum of forces on y to find the normal force:

[tex]\sum{F_{y}}=ma_{c}[/tex]

so we get:

[tex]N-w_{y}=ma_{c}[/tex]

and we solve for the normal force so we get:

[tex]N=ma_{c}+w_{y}[/tex]

and substitute:

[tex]N=ma_{c}+mg [/tex]

when factoring we get:

[tex]N=m(a_{c}+g)[/tex]

and we substitute:

[tex]N=(35kg)(12.91m/s^{2}+9.81m/s^{2} sin30^{o})[/tex]

which yields:

N=795.2N

Following are the calculation to the angles:

For angle 30°:

consider the forces in tangential in direction:  

[tex]\Sigma F_t= ma_t\\\\ W \cos \theta= m a_t \\\\m g \cos \theta = m a_t\\\\ a_t = g \cos \theta = 9.81 \cos 30^{\circ} \\\\a_t = 8.496 \ \frac{m}{s^2}\\\\[/tex]

calculate the speed of the child:

[tex]g\cos \theta = a_t\\\\ g\cos \theta = \frac{v.dv}{R d\theta} \\\\g R \cos \theta d \theta= V \ dv\\\\[/tex]  

Integrating the equation:

[tex]\int_{20}^{30} g R \cos \theta d \theta= \int_{0}^{v} V \ dv\\\\g R (\sin \theta)_{20}^{30} = [\frac{V^2}{2}]_{0}^{v} \ dv\\\\g R (\sin 30-\sin 20) = \frac{V^2}{2}\\\\9.81 \times 2.5 (\sin 30-\sin 20) = \frac{V^2}{2}\\\\v=2.79 \ \frac{m}{s}\\\\[/tex]

consider the forces in the normal declaration:  

[tex]\Sigma F_n = ma_n \\\\N-mg \sin \theta= \frac{mv^2}{R} \\\\N- (35\times 9.81\times \sin 30) = \frac{35 \times 2.78^2}{2.5}\\\\N= 279.87\ N[/tex]

For angle 90°:

consider the forces in tangential in direction:  

[tex]\Sigma F_t= ma_t\\\\ W \cos \theta= m a_t \\\\m g \cos \theta = m a_t\\\\ a_t = g \cos \theta = 9.81 \cos 90^{\circ} \\\\a_t = 0\ \frac{m}{s^2}\\\\[/tex]

calculate the speed of the child:  

[tex]g\cos \theta = a_t\\\\ g\cos \theta = \frac{v.dv}{R d\theta} \\\\g R \cos \theta d \theta= V \ dv\\\\[/tex]  

Integrating the equation:

[tex]\int_{20}^{30} g R \cos \theta d \theta= \int_{0}^{v} V \ dv\\\\g R (\sin \theta)_{20}^{90} = [\frac{V^2}{2}]_{0}^{v} \ dv\\\\g R (\sin 90-\sin 20) = \frac{V^2}{2}\\\\9.81 \times 2.5 (\sin 90-\sin 20) = \frac{V^2}{2}\\\\V=\sqrt{\frac{9.81 \times 2.5 (\sin 90-\sin 20) }{2}}[/tex]

   [tex]=\sqrt{\frac{9.81 \times 2.5 (1 -0.342)}{2}}\\\\=\sqrt{8.06}\\\\=2.83[/tex]

consider the forces in the normal declaration:  

[tex]\Sigma F_n = ma_n \\\\N-mg \sin \theta= \frac{mv^2}{R} \\\\N- (35\times 9.81\times \sin 90) = \frac{35 \times 2.78^2}{2.5}\\\\N= \frac{35 \times 2.78^2}{2.5 \times 35\times 9.81\times 1}\\[/tex]

    [tex]= \frac{270.494}{858.375}\\\\=0.315[/tex]

Learn more:

brainly.com/question/13077544


Consider an atom. Which contributes most to the size of the atom?

Answers

Answer:

Protons contribute the most to the size of the atom

Answer:

Protons

Explanation:

Protons contribute more to both the mass and size of an atom. Protons contribute more to an atom's mass while electrons contribute more to its size.

If light energy to electric energy conversion using solar cells is 12 % efficient, how many square miles of land must be covered with solar cells to supply the electrical energy for 350000 houses? Assume there is no cloud cover.

Answers

Complete Question

The light energy that falls on a square meter of ground over the course of a typical sunny day is about 20 MJ . The average rate of electric energy consumption in one house is 1.0 kW .

If light energy to electric energy conversion using solar cells is 12 % efficient, how many square miles of land must be covered with solar cells to supply the electrical energy for 350000 houses? Assume there is no cloud cover.

Answer:

The area is  [tex]A = 1.26 *10^{7} m^2[/tex]

Explanation:

From the question we are told that

      The efficiency is  [tex]\eta =[/tex]12%

      The number of houses is  [tex]N = 350000[/tex]

       The light energy per day is [tex]E = 20 \ MJ[/tex]

       The average rating of electric energy for a house is  [tex]E_h = 1.0 \ k W = 1000W[/tex]

   

Generally the electric energy which the solar cells covering [tex]1 \ m^2[/tex] produces in a day is

       [tex]E_s = \eta * E[/tex]

           [tex]E_s = 0.12 * 20*10^{6}[/tex]

          [tex]E_s = 2.4 MJ m^{-2}[/tex]

Energy for required by one house for one day is  

        [tex]E_H = E_h * 1 \ day[/tex]  

       [tex]E_H = 1000 * 24 * 3600[/tex]  

        [tex]E_H = 86.4 MJ[/tex]

Energy needed for 350000 house is

      [tex]E_z = 86.4 *10^{6} * 350000[/tex]  

     [tex]E_z = 3.02 *10^{7} MJ[/tex]

The area covered is mathematically represented as

            [tex]A = \frac{3.02*10^{7} \ MJ}{2.4 \ MJ m^{-2}}[/tex]

           [tex]A = 1.26 *10^{7} m^2[/tex]

           

       

Can someone please help me with this question thank you!

Answers

at the highest point that is Bbecause PE is directly proportional to height hope it helped

WILL VOTE MOST BRAINLIEST
Which of the following explains why the inner planets are different than the outer planets?

A) Due to the greater inertia of the dust particles, the dust remained close to the sun to form the inner planets leaving gases to form the outer planets.

B) The lighter gases boiled off of the protoplanets closest to the sun, leaving dust and metals behind to form the inner planets.

C) Due to the greater momentum of the gas particles, the gas particles flew farther away from the sun than dust and metals to form the outer planets, leaving dust and metals to form the inner planets.

Answers

Answer:

B) The lighter gases boiled off of the protoplanets closest to the sun, leaving dust and metals behind to form the inner planets.

Explanation:

Inner planets are smaller and rockier than outer gas planets,outer planets are larger,because of their lower gravity they don't attract extreme amounts of gas in their planets.The four outer planets were so far from the Sun that its winds could not blow away their ice and gases

Complete the sentence below correctly.

A compression of a longitudinal wave is like a

of a transverse wave.

OA) crest

OB) trough

OC) rarefaction

OD) compression

Answers

Answer:

A.  Crest

Explanation:

Longitudinal wave is a type of wave that is characterized by the particles of the medium's movement in a parallel direction in comparison to the direction in which wave travels, such that, in compression of longitudinal wave, the density of the wave medium is at its highest due to its closeness together than natural state, while in rarefaction, the density is at its lowest due to wave medium spread apart than normal.

Similarly, in Transverse wave, the crest of a wave implies the medium has reached the highest point while the trough of the wave depicts the lowest point the wave medium has reached.

Therefore, longitudinal wave's compression and rarefaction equates accordingly to the crest and trough of a transverse wave.

Hence, a compression of a longitudinal wave is like a CREST of a transverse wave.

What is a limitation of the electron cloud model theory that
a law about electrons would not have?

Answers

Answer:

Electron cloud model describes the region in an atom which negatively charged and which has probability to find an electron. according to this model, an electron can move closer or away from the nucleus that is it can be inside the nucleus but according to Bohr's model, an electron is always at a fixed distance from the nucleus. Thus, it is the limitation of the electron cloud model but still it is a widely accepted model.

A flat, rectangular coil consisting of 60 turns measures 23.0 cmcm by 34.0 cmcm . It is in a uniform, 1.40-TT, magnetic field, with the plane of the coil parallel to the field. In 0.230 ss , it is rotated so that the plane of the coil is perpendicular to the field.
(a) What is the change in the magnetic flux through the coil due to the rotation?
(b) What is the magnitude of the average emf induced in the coil during the rotation?
(c) What is the average current induced in the coil during the rotation?

Answers

Answer:

(a)   ΔФ = -0.109W

(b)  emf = 28.43V

(c)   Iin = emf/R

Explanation:

(a) In order to calculate the magnetic flux you use the following formula:

[tex]\Delta\Phi_B=\Phi-\Phi_o=BAcos(90\°)-BAcos(0\°)[/tex]   (1)

B: magnitude of the magnetic field = 1.40T

A: area of the rectangular coil = (0.23m)(0.34m)=0.078m^2

Where it has been taken into account that at the beginning the normal vector to the cross sectional area of the coil, and the magnetic field vector are parallel. When the coil is rotated the vectors are perpendicular.

Then, you obtain:

[tex]\Delta\Phi_B=(1.40T)(0.078m^2)=-0.109W[/tex]

The change in the magnetic flux is -0.109 W

(b) During the rotation of the coil the emf induced is given by:

[tex]emf=-N\frac{\Delta \Phi}{\Delta t}[/tex]         (2)

N: turns of the coil = 60

ΔФ: change in the magnetic flux = 0.109W

Δt: lapse time of the rotation = 0.230s

You replace the values of the parameters in the equation (2):

[tex]emf=-(60)(\frac{-0.109W}{0.230s})=28.43V[/tex]

The induced emf is 28.43V

(c) The induced current in the coil is given by:

[tex]I_{in}=\frac{emf}{R}[/tex]      (3)

R: resistance of the coil     (it is necessary to have this value)

emf :induced emf  = 28.43V

Three long parallel wires, each carrying 20 A in the same direction, are placed in the same plane with the spacing of 10 cm. What is the magnitude of net force per metre on central wire?

Answers

Answer:

F/L =  8*10^-4 N/m

Explanation:

To calculate the magnitude of the force per meter in the central wire, you take into account the contribution to the force of the others two wires:

[tex]F_N=F_{1,2}+F_{2,3}[/tex]   (1)

F1,2 : force between first and second wire

F2,3 : force between second and third wire

The force per meter between two wires of the same length is given by:

[tex]\frac{F}{L}=\frac{\mu_oI_1I_2}{2\pi r}[/tex]

μo: magnetic permeability of vacuum =  4pi*10^-7 T/A

r: distance between wires

Then, you have in the equation (1):

[tex]\frac{F_N}{L}=\frac{\mu_oI_1I_2}{2\pi r}+\frac{\mu_oI_2I_3}{2\pi r}\\\\\frac{F_N}{L}=\frac{\mu_oI_1}{2\pi r}[I_2+I_3][/tex]

But

I1 = I2 = I3 = 10A

r = 10cm = 0.1m

You replace the values of the currents and the distance r and you obtain:

[tex]\frac{F_N}{L}=\frac{\mu_oI^2}{\pi r}\\\\\frac{F_N}{L}=\frac{(4\pi*10^{-7}T/A)(20A)^2}{2\pi (0.1m)}=8*10^{-4}\frac{N}{m}[/tex]

hence, the net force per meter is 8*10^-4 N/m

A gardener pushes a shovel into the ground with a force of 75 N. The angle of the shovel to the ground is 80 degrees. What is the downward force of the shovel? A. 13.0 N B. 73.9 N C. 75.2 N D. 80.0 N

Answers

Answer:

B

Explanation:

Resolve the 75N force into 2 components; horizontal and vertical. And remember that there is no acceleration in the downward direction, so apply Newton's second law and equate it to 0.

Suppose the electric field in problems 2 was caused by a point charge. The test charge is moved to a distance twice as far from the charge. What is the magnitude of the force that the field exerts on the test charge now ?

Answers

Answer:

it is reduced four times.

Explanation:

By definition, the electric field is the force per unit charge created by a charge distribution.

If the charge creating the field is a point charge, the force exerted by it on a test charge, must obey Coulomb´s Law, so, it must be inversely proportional to the square of the distance between the charges.

So, if the distance increases twice, as the force is inversely proportional to the square of the distance, and the square of 2 is 4, this means that the magnitude of the force exerted on the test charge must be 4 times smaller.

Two vectors are being added, one at an angle of 20.0 , and the other at 80.0. The only thing you know about the magnitudes is they are both positive. Will the equilibrant vector be in the:

a. first quadrant
b. second quadrant
c. third quadrant
d. fourth quadrant
e. you cannot tell which quadrant from the available information

Answers

Answer:a

Explanation: they are all positive

The equivalent vectors of both the vectors lie in the first quadrant. So, the right choice is a. first quadrant.

How the resultant of the vectors can be calculated?

The resultant of the vectors can be calculated using the Parallelogram theorem of vector addition. In this theorem, a parallelogram is formed using the vectors, having the vectors as the adjacent side and the diagonal of this parallelogram is the resultant of both the vectors.

How the theorem is implemented to find out the resultant?

The vectors A and B are drawn at the given angle, angles of 20° and 80°  respectively. Using the vectors, A and B, the dotted parallelogram is drawn, and the vector C is the resultant.

Learn more about vectors here:

https://brainly.com/question/25705666

A cosmic ray electron moves at 7.6 x 106 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.02 x 10-5 T. What is the radius of the circular path the electron follows

Answers

Answer:

r = 4.23 m

Explanation:

To find the radius of the circular path of the electron you use the following formula:

[tex]r=\frac{mv}{qB}[/tex]  (1)

This formula can be used because the motion of the electron is perpendicular to the direction of the magnetic field vector.

m: mass of the electron = 9.1*10^-31 kg

q: charge of the electron = 1.6*10^-19 C

B: magnitude of the magnetic field = 1.02*10^-5 T

v: velocity of the electron = 7.6*10^6 m/s

You replace the values of m, v, q and B in the equation (1):

[tex]r=\frac{(9.1*10^{-31}kg)(7.6*10^6 m/s)}{(1.6*10^{-19}C)(1.02*10^{-5}T)}\\\\r=4.23m[/tex]

hence, the raiuds of the orbit of the electron is 4.23m

A loop of wire carrying a steady current I is initially at rest perpendicular to a uniform magnetic field of magnitude B, as shown above. The loop is then rotated about a diameter at a constant rate. The torque on the loop is maximum when the loop has rotated, with respect to its initial position, through an angle of:__________.
(A) 30°
(B) 45°
(C) 90°
(D) 180°
(E) 360°

Answers

your answer is b to be presided

The answer is the second one (B)

A wall clock has a second hand 22.0 cmcm long. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Fast car, flat curve. Part A What is the radial acceleration of the tip of this hand

Answers

Answer:

Explanation:

The tip of the second hand moves on a circular path having radius equal to .22 m . Redial acceleration is given by the expression

ω²R where ω is angular velocity and R is radius of the circular path .

angular velocity of second hand = 2π / T where T is time period of circular motion . For second hand it is 60 s.

ω = 2π / T

= 2π / 60

= .1047

angular acceleration =  .1047² x .22

= 2.41 x 10⁻³ rad / s² .

So, the required radial acceleration is [tex]a=0.21 cm/s[/tex]

Acceleration:

The rate of change of velocity with respect to time.

Acceleration is a vector quantity.

The formula for the acceleration is,

[tex]a=\frac{V^2}{R}[/tex]

It is given that the radius is 22 cm

Now, substituting the given values into the above formula we get,

[tex]a=\frac{V^2}{22}[/tex]

Here, 1 second is equal to [tex]\frac{2\pi}{60}[/tex] then,

[tex]\\w=\frac{2\pi}{60}\\v=wR\\v=\frac{2\pi}{60}\times 19\\a=(\frac{2\pi}{60}\times 19)^2\times 19\\a=0.21 cm/s[/tex]

Learn more about the topic acceleration:

https://brainly.com/question/11021097

Choose the INCORRECT statement: A) Gauss' law can be derived from Coulomb's law B) Gauss' law states that the net number of lines crossing any closed surface in an outward direction is proportional to the net charge enclosed within the surface C) Coulomb's law can be derived from Gauss' law and symmetry D) Gauss' law applies to a closed surface of any shape E) If a closed surface encloses no charge, the electric field is zero everywhere on the surface

Answers

Answer:

A

Explanation:

A)

INCORRECT

No, Gauss's Law can not be derived from Coulomb's Law alone. Since, Coulomb's Law provides electric field produced by a single point charge. Therefore, it is important to assume principle of super position along with Coulomb's law to get the field due to all charges. So, Gauss's Law can be proved by the help of both Super Position Principle and Coulomb's law.

B)

CORRECT

Yes, Gauss' law states that the net number of lines crossing any closed surface in an outward direction is proportional to the net charge enclosed within the surface.

C)

CORRECT

Yes, Coulomb's law can be derived from Gauss' law and symmetry.

D)

CORRECT

Yes, Gauss's Law applies to a closed surface of any shape.

E)

CORRECT

Yes, if a closed surface encloses no charge, the electric field is zero everywhere on the surface.

On his way to deliver presents Santa has a minor accident. If the sleigh (1200 kg) was traveling at 322 m/s and the jet(4800 kg) was traveling at 680 m/s and they collided head on, what was the final velocity of the two objects after the collision

Answers

Answer:

608.4m/s

Explanation:

We are given that

Mass of Sleigh,M=1200 kg

Speed of Sleigh,u=322 m/s

Speed of jet,u'=680 m/s

Mass of jet,m=4800 kg

Total mass=M+m=1200+4800=6000 kg

We have to find the final velocity of the two objects after the collision.

The collision is inelastic .

By using law of conservation of momentum

[tex]Mu+mu'=(m+M)v[/tex]

Using the formula

[tex]1200\times 322+4800\times 680=6000v[/tex]

[tex]6000v=3650400[/tex]

[tex]v=\frac{3650400}{6000}[/tex]

[tex]v=608.4m/s[/tex]

Hence, the final  velocity of two objects after the collision=608.4m/s

Human reaction times are worsened by alcohol. How much further (in feet) would a drunk driver's car travel before he hits the brakes than a sober driver's car? Assume that both are initially traveling at 50.0 mi/h and their cars have the same acceleration while slowing down, and that the sober driver takes 0.33 s to hit the brakes in a crisis, while the drunk driver takes 1.0 s to do so. (5280 ft = 1 mi)

Answers

Answer:

A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes

Explanation:

Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:

2as = Vf² - Vi²

s = (Vf² - Vi²)/2a

where,  

Vf = Final Velocity of Car = 0 mi/h

Vi = Initial Velocity of Car = 50 mi/h

a = deceleration of car  

s = distance covered

Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.

So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:

s = vt

FOR SOBER DRIVER:

v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s

t = 0.33 s

s = s₁

Therefore,

s₁ = (73.33 ft/s)(0.33 s)

s₁ = 24.2 ft

FOR DRUNK DRIVER:

v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s

t = 1 s

s = s₂

Therefore,

s₂ = (73.33 ft/s)(1 s)

s₂ = 73.33 ft

Now, the distance traveled by drunk driver's car further than sober driver's car is given by:

ΔS = s₂ - s₁

ΔS = 73.33 ft - 24.2 ft

ΔS = 49.13 ft

Consider the interference/diffraction pattern from a double-slit arrangement of slit separation d = 6.60 um and slit width a. The wavelength of the monochromatic light incident normally upon the slits is 2n = d/10 (in air). There is a filter (of negligible thickness) placed on slit 2, so that the magnitude of the EM wave emitted from it is half of that emitted from slit 1. The space between the slits and the screen is filled with water, whose index of refraction is n = 1.33 (you can take noir as 1.00).
(a) What is the wavelength 2 of the light in water?
(b) If a << 1, What is the phase difference between the waves from slits 1 and 2?
(c) For a << 2, Derive an expression for the intensity / as a function of O and other relevant parameters, including the intensity at the center of the screen (where 0 = 0).
(d) Now suppose a = d/3. Redo part (b) above. How many interference maxima are present within the central diffraction peak? (Do not count the "clipped" maxima, if any.) (4) — E -2 d E ) в /Б/ = 1/5 | TT

Answers

Answer:

(a) λ = 0.496 um (b) S =2π Δ d sinθ/ λ  (c) I =gI₀ (d) For the central diffraction peak, a total of 5 interference maxima are present or available.

Note: find an attached copy of a part of the solution to the given question below.

Explanation:

Solution

Recall that:

d = 6.6 um

λ₀ =d/10

λ₀ = 6.6 um

Now,

(a) We find the wavelength λ of the light in water.

Thus,

λ water = (λ₀ )/n

= 0.66/1.33

So,

λ water = λ = 0.496 um

(b) We find the phase difference between the waves from slit 1 and 2

Now,

if a <<d  and a<<λ

Then the path difference between the rays will be

Δ S₂N = Δ d sinθ

Thus, the phase difference becomes,

S = 2π Δ/λ is S= 2π Δ d sinθ/ λ

(c) The next step is to derive an expression for the intensity  I as function of O and other relevant parameters.

Now,

Let p be the point where these two rays interfere with each other.

Thus,

The electric field vector coming out from slot and and slot 2 is

E₁= E₀₁ cos (ks₁ p - wt) i

E₂ = E₀₂ cos (ks₂ p - wt) i

Note: Kindly find an attached copy of a part of the solution to the given question below.

A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a car is moving away from this stereo at a speed of 40.0 m/s. The frequency of sound waves that the car receives is ________. In addition, when the car is 70.0 meters away from the speaker, the car will hear sound waves with a sound intensity level of _________ .

Answers

Answer:

a) f' = 432 Hz

b) I = 8.12*10^-4 W/m^2

Explanation:

a) To calculate the frequency of sound waves that car receives, you take into account the Doppler effect. In this case (observer moves away of the source) you have the following formula:

[tex]f'=f(\frac{v-v_o}{v+v_s})[/tex]    (1)

where

f: frequency of the source = ?

v: speed of sound = 343 m/s

vo: speed of the observer = 40.0 m/s

vs: speed of the source = 0 m/s (stationary)

You replace the values of all parameters in the equation (1):

To calculate f' you first calculate the frequency of the sound wave, by using the following formula:

[tex]v=\lambda f\\\\[/tex]

v: speed of sound

λ: wavelength = 0.700 m

[tex]f=\frac{v}{\lambda}=\frac{343m/s}{0.700m}=480Hz[/tex]

Next, you replace the values of all parameters in the equation (1):

[tex]f'=(490Hz)(\frac{343m/s-40.0m/s}{343m/s})=432Hz[/tex]

hence, the frequency perceived by the car is 432 Hz

b) To calculate the power of the sound wave, when the car is 70.0 maway from the speaker, you use the following formula:

[tex]I=\frac{P}{4\pi r^2}[/tex]

P: power of the source = 50.0 W

r: distance to the source = 70.0 m

[tex]I=\frac{50.0 W}{4\pi(70.0m)^2}=8.12*10^{-4}\frac{W}{m^2}[/tex]

hence, the intensity is 8.12*10^⁻4 W/m^2

A gas at pressure 100 atm and volume 3.7 L has the pressure reduced to 32 atm what is the new volume of the gas

Answers

Answer:

The new volume is  [tex]11.6L[/tex]

Explanation:

      This problem is on the application of Boyle's law which states that" the volume of a given mass of gas at constant temperature is inversely  proportional to the pressure"

[tex]pressure \alpha \frac{1}{volume}[/tex]

Given data

initial pressure p1= 100atm

initial volume v1= 3.7L

final pressure p2= 32 atm

final volume v2= ?

Apply Boyle's law we have

[tex]p1v1= p2v2\\[/tex]

[tex]v2= \frac{p1v1}{p2}[/tex]

Substituting our data we have

[tex]v2= \frac{100*3.7}{32} \\v2=\frac{370}{32} \\v2= 11.6 L[/tex]

The new volume is [tex]11.6L[/tex]

⦁ Consider an atom. Which contributes most to the mass of the atom?

Answers

Answer:

protons

Explanation:

There is an old physics joke involving cows, and you will need to use its punchline to solve this problem
A cow is standing in the middle of an open, flat field. A plumb bob with a mass of 1 kg is suspended via an unstretchable string 10 meters long so that it is hanging down roughly 2 meters away from the center of mass of the cow. Making any reasonable assumptions you like or need to, estimate the angle of deflection of the plumb bob from vertical due to the gravitational field of the cow.

Answers

Answer:

The angle of deflection will be "1.07 × 10⁻⁷°".

Explanation:

The given values are:

Mass of a cow,

m = 1100 kg

Mass of bob,

mb = 1 kg

The total distance between a cow and bob will be,

d = 2 m

Let,

The tension be "t".

The angle with the verticles be "[tex]\theta[/tex]".

Now,

Vertically equating forces

⇒  [tex]T\times Cos \theta =mb\times g[/tex] ...(equation 1)

Horizontally equating forces

⇒  [tex]T\times Sin \theta = G\times M\times \frac{mb}{d^2}[/tex] ...(equation 2)

From equation 1 and equation 2, we get

⇒  [tex]tan \thata=\frac{G\times M}{g\times d^2}[/tex]

O putting the estimated values, will be

⇒  [tex]\theta = tan(\frac{6.674\times 10^{-11}\times 1100}{9.8\times 2^2} )[/tex]

⇒  [tex]\theta = 1.07\times 10^{-7}^{\circ}[/tex]

When we say that an object wants to maintain its state of motion, we’re talking about inertia. Which term determines the quantity of inertia for an object?

A.
mass
B.
velocity
C.
acceleration
D.
weight

Answers

Answer:

A. mass

Explanation:

Mass determines the quantity of inertia for an object. Mass is the quantity that depends upon the inertia of an object. The inertia that an object has is directly proportional to the mass of the object.

An object that has more mass has a greater tendency as compared to the object that has less mass to resist changes in its state of motion.

Other Questions
Area of a triangle (picture provided) If this was the last day of your life, would you still do the same things that you did today? and why the subject would be other but don't have that Caminar to preterite form HELP PLEASE THANKSSolve N = 3pg^2 - 2pv for v. Solve4(2x - 3) = 6x + 2 An object is launched directly in the air at a speed of 64 feet per second from a platform located 16 feet in the air. The motion of the object can be modeled using the function f(t)=16t2+64t+16, where t is the time in seconds and f(t) is the height of the object. When, in seconds, will the object reach its maximum height? Tansition elements form:A) colorless ions in solution, multiple positiveoxidation statesB) colorless ions in solution, multiple negativeoxidation statesC) colored ions in solution, multiple positiveoxidation statesD) colored ions in solution, multiple negativeoxidation states What is the volume of a sphere if it has a radius of 3 centimeters? (Use 3.14 for .) Consider a second hand car market where three types of cars are being sold: High quality (H), medium quality (M) and low quality (L). Sellers value an H at $2000, an M at $1200 and an L at $800, whereas buyers value an H at $1800, an M at $1600 and an L at $1400. As discussed in the Akerlos Lemons Market, sellers are able to distinguish between dierent quality cars but buyers are not and a buyer believes that in this market 40% of the cars is an H, 30% of the cars is an M and 30% of the cars is an L.a) Determine which type of cars will be sold at the ecient allocation. b) Determine which type of cars will be sold at the market equilibrium. If h(x) = x 7 and g(x) = x2, which expression is equivalent to ?(5 7)2(5)2 7(5)2(5 7)(5 7)x2 NECESITO ESTO RAPIDO What is the range of the function f(x) = -2(64) + 3? (MC)For a theater production, you are in charge of dimming and switching the lights as well as controlling the special effects like the fog machine. What role in the crew do you have?O Lighting techO Lighting designerO Lighting board operatorO Lighting assistant This poster was aimed towardA.) citizens of Britain B.) civilians on the home frontC.) soldiers on the battlefieldThe government created this poster to encouragepeople toA.) conserve foodB.) enlist in the armed forcesC.) buy war bonds Por qu el motivo narrativo La soledad es una temtica recurrente en la sociedad contempornea? What is the function of the crop in birds?to circulate oxygento circulate bloodto store foodto grind food Which statement about quotation marks is true?1. Quotation marks set apart short quotations.II. Typically, a direct quotation requires three quotation marks.III. Commas used to introduce short quotations appear outside the quotation marks.O II onlyI and IIIl and IIIO I and III In one area, monthly incomes of technology-related workers have a standard deviation of $650. It is believed that the standard deviation of the monthly incomes of non-technology workers is different. 71 non-technology workers are randomly selected and it is determined that these selected workers have a standard deviation of $950. Test the claim that the non-technology workers have a different standard deviation (so different from $650). Use a 0.10 significance level. The common stock of the P.U.T.T. Corporation has been trading in a narrow price range for the past month, and you are convinced it is going to break far out of that range in the next 3 months. You do not know whether it will go up or down, however. The current price of the stock is $120 per share, and the price of a 3-month call option at an exercise price of $120 is $8.89. a. If the risk-free interest rate is 8% per year, what must be the price of a 3-month put option on P.U.T.T. stock at an exercise price of $120? (The stock pays no dividends.) (Do not round intermediate calculations. Round your answer to 2 decimal places.) b. A straddle would be a simple options strategy to exploit your conviction about the stock prices future movements. How far would it have to move in either direction for you to make a profit on your initial investment? (Round your intermediate calculations and final answer to 2 decimal places.) A heat engine with a thermal efficiency of 25% is connected to an electric generator with an efficiency of 95%. A liquid fuel providing heat is consumed at 2.29 litres per hour. What is the power output in kW from the generator?Heat of Combustion: 43.7 MJ/kg Density of the fuel: 0.749 g/ml