If the molal concentration in water is the same for the following substances, rank these solutions in decreasing melting point. Highest placed in the rank will have the highest melting point.


calcium phosphate, Ca3(PO4)2


glucose, c6h12o6


sodium chloride, NaCl


magnesium chloride, MgCl2

Answers

Answer 1

The ranking of these solutions in decreasing melting point is: calcium phosphate > magnesium chloride > sodium chloride > glucose.

To rank the solutions with the same molal concentration in decreasing order of their melting points, we need to consider their van't Hoff factor (i), which represents the number of particles a solute dissociates into when dissolved in water. The formula to calculate the effect of a solute on the melting point of a solution is ΔTf = Kf × m × i, where Kf is the cryoscopic constant of water, m is the molality, and i is the van't Hoff factor.

Here are the van't Hoff factors for each substance:

1. Calcium phosphate, Ca₃(PO₄)₂: This substance dissociates into 5 ions (3 Ca²⁺ + 2 PO₄³⁻), so i = 5.
2. Glucose, C₆H₁₂O₆: This substance is a molecular compound and does not dissociate into ions, so i = 1.
3. Sodium chloride, NaCl: This substance dissociates into 2 ions (Na⁺ + Cl⁻), so i = 2.
4. Magnesium chloride, MgCl₂: This substance dissociates into 3 ions (Mg²⁺ + 2 Cl⁻), so i = 3.

Using the van't Hoff factor, we can rank the solutions in decreasing order of their melting points:

1. Calcium phosphate, Ca₃(PO₄)₂ (i = 5)
2. Magnesium chloride, MgCl₂(i = 3)
3. Sodium chloride, NaCl (i = 2)
4. Glucose, C₆H₁₂O₆ (i = 1)

So, the ranking of these solutions in decreasing melting point is: calcium phosphate > magnesium chloride > sodium chloride > glucose.

To know more about van't Hoff factors :

https://brainly.com/question/30905748

#SPJ11


Related Questions

Suppose you are a farmer trying to produce a high yield of corn to sell for the
manufacturing of ethanol, the main ingredient in flex fuels (e85). in order to produce
a large corn crop, you need to purchase a fertlizer that is high in nitrogen. given the
choice of two fertlizers, ammonium sulfate or ammonium phosphate, which one
would you choose to yield the largest amount of corn? explain your answer. hint:
determine the percent of nitrogen in each fertilizer.

Answers

Based on the nitrogen content, you should choose ammonium phosphate as it contains a higher percentage of nitrogen (28.2%) compared to ammonium sulfate (21.2%), which will potentially yield a larger corn crop for ethanol production.

To determine which fertilizer, ammonium sulfate or ammonium phosphate, would yield the largest amount of corn for ethanol production, you need to consider the nitrogen content in each fertilizer.

Ammonium sulfate has the chemical formula (NH4)2SO4. It contains 2 nitrogen atoms (N), 8 hydrogen atoms (H), 1 sulfur atom (S), and 4 oxygen atoms (O). The molar mass of nitrogen is 14 g/mol, so the nitrogen content in ammonium sulfate is:
2(N) = 2(14 g/mol) = 28 g/mol.

The molar mass of ammonium sulfate is 132.14 g/mol. To calculate the percent of nitrogen in ammonium sulfate, divide the nitrogen mass by the total molar mass and multiply by 100:
(28 g/mol) / (132.14 g/mol) × 100 = 21.2%.

Ammonium phosphate has the chemical formula (NH4)3PO4. It contains 3 nitrogen atoms, 12 hydrogen atoms, 1 phosphorus atom, and 4 oxygen atoms. The nitrogen content in ammonium phosphate is:
3(N) = 3(14 g/mol) = 42 g/mol.

The molar mass of ammonium phosphate is 149.09 g/mol. To calculate the percent of nitrogen in ammonium phosphate, divide the nitrogen mass by the total molar mass and multiply by 100:
(42 g/mol) / (149.09 g/mol) × 100 = 28.2%.

Based on the nitrogen content, you should choose ammonium phosphate as it contains a higher percentage of nitrogen (28.2%) compared to ammonium sulfate (21.2%), which will potentially yield a larger corn crop for ethanol production.

To know more about ethanol production refer here: https://brainly.com/question/31574140#

#SPJ11

A gas occupying 3. 05 liters at STP is warmed to 85. 0°C. It


now occupies 9. 85 liters. What is the pressure of the gas?

Answers

The pressure of the gas can be calculated using the combined gas law equation. The pressure of the gas at STP is 1 atm. Therefore, the pressure of the gas at 85.0°C is 0.289 atm.

Given that a gas occupies 3.05 L at STP, we can assume that the gas is at a pressure of 1 atm and a temperature of 273 K. We can use the ideal gas law to find the number of moles of gas in the container at STP:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

Rearranging the equation to solve for n, we get:

n = PV/RT

Substituting in the values for P, V, R, and T, we get:

n = (1 atm)(3.05 L)/(0.0821 L·atm/mol·K)(273 K)

n = 0.125 mol

Now, we know that the volume of the gas has increased to 9.85 L and the temperature has increased to 85°C. We need to find the new pressure of the gas.

First, we need to convert the temperature to Kelvin:

85°C + 273 = 358 K

Next, we can use the combined gas law to find the new pressure of the gas:

P1V1/T1 = P2V2/T2

Substituting in the values we know:

(1 atm)(3.05 L)/(273 K) = P2(9.85 L)/(358 K)

Solving for P2, we get:

P2 = (1 atm)(3.05 L)/(273 K)(9.85 L/358 K)

P2 = 0.289 atm

Therefore, the pressure of the gas at the new volume and temperature is 0.289 atm.

To know more about the combined gas law refer here :

https://brainly.com/question/30458409#

#SPJ11

Find the volume of a figure round the answer to the nearest hundred 4cm 4cm 4cm

Answers

Answer: 64 I think

Explanation:

unsure of wether or not there is a specific shape given but the original equation for volume is length x width x height so just multiply all..

4 x 4 = 16

16 x 4 = 64




How much heat is released when a 27. 7 g sample of ethylene glycol (C = 2. 42 J/gºC) at 42. 76°C is cooled to


32. 5°C

Answers

When a 27. 7 g sample of ethylene glycol (C = 2. 42 J/gºC) at 42. 76°C is cooled to 32. 5°C the amount of heat released is  685.87 joule.

To calculate the heat released when a 27.7 g sample of ethylene glycol is cooled from 42.76°C to 32.5°C, you can use the formula:

q = mcΔT

where q represents the heat released, m is the mass (27.7 g), c is the specific heat capacity (2.42 J/gºC), and ΔT is the change in temperature (42.76°C - 32.5°C).

ΔT = 42.76°C - 32.5°C = 10.26°C

Now plug in the values into the formula:

q = (27.7 g) × (2.42 J/gºC) × (10.26°C) = 685.87 J

So, 685.87 Joules of heat are released when the 27.7 g sample of ethylene glycol is cooled from 42.76°C to 32.5°C.

Know more about Specific heat capacity here:

https://brainly.com/question/29766819

#SPJ11

Certain amounts of the hypothetical substances A2 and B are mixed in a 3. 00 liter container at 300. K. When equilibrium is established for the reaction the following amounts are present: 0. 200 mol of A2, 0. 400 mol of B, 0. 200 mol of D, and 0. 100 mol of E. What is Kp, the equilibrium constant in terms of partial pressures, for this reaction

Answers

Without knowing the balanced chemical equation for the reaction involving A2, B, D, and E, it is not possible to determine the equilibrium constant Kp.

The equilibrium constant Kp is specific to a particular chemical reaction at a given temperature, and is determined by the stoichiometry of the reaction and the relative partial pressures of the reactants and products at equilibrium.

Therefore, to calculate Kp, we need to know the balanced chemical equation for the reaction involving A2, B, D, and E, as well as the partial pressures of the gases at equilibrium.

To know more about balanced refer here

https://brainly.com/question/27154367#

#SPJ11

Name the following compounds:
a. C2H4 or H2C=CH2
b. CsH6 or CH3CH=CH2
C. C4H8 or H2C=CHCH2CH3
d. CaHs or CH3CH2=CH2CH3
e. CsH1o or CHaCH2CH2CH=CH2

Answers

a. C2H4 or H2C=CH2 is called ethene or ethylene
b. CsH6 or CH3CH=CH2 is called cyclohexene
c. C4H8 or H2C=CHCH2CH3 is called 1-butene
d. CaHs or CH3CH2=CH2CH3 is called 1-pentene
e. CsH1o or CHaCH2CH2CH=CH2 is called 1-decene

If 9.82 g of pb(no3)4 are dissolved to make a 3.5 m solution, what is the volume (in ml.) of that solution?

Answers

The volume of the 3.5 m solution containing 9.82 g of Pb(NO3)4 is about 4.103 mL.

To calculate the volume of the solution, we need to use the formula for molality:

Molality (m) = moles of solute / kg of solvent

First, we need to find the moles of Pb(NO3)4 in 9.82 g. The molar mass of Pb(NO3)4 is approximately 683.56 g/mol.

Moles of Pb(NO3)4 = 9.82 g / 683.56 g/mol ≈ 0.01436 mol

Now, we can use the given molality (3.5 m) to find the mass of the solvent:

0.01436 mol = 3.5 m * kg of solvent
kg of solvent = 0.01436 mol / 3.5 m ≈ 0.004103 kg

Since the solvent is water, we can assume that 1 kg of water is equal to 1 L. Therefore, the volume of the solution is:

0.004103 kg * 1000 mL/kg ≈ 4.103 mL

So, the volume of the 3.5 m solution containing 9.82 g of Pb(NO3)4 is approximately 4.103 mL.

To learn more about solvent, refer below:

https://brainly.com/question/30885015

#SPJ11

What is the normal boiling point of a 3.45mol solution of kbr that has density of 1.10gml?(ka for h2o is 0.512°c kg/mole)

Answers

The normal boiling point of the 3.45 mol solution of KBr is 104.7384°C.

The normal boiling point of a 3.45 mol solution of KBr with a density of 1.10 g/mL can be calculated using the formula:

ΔT = Kb * molality

where ΔT is the boiling point elevation, Kb is the molal boiling point elevation constant for water (0.512°C kg/mol), and molality is the number of moles of solute per kilogram of solvent.

First, we need to calculate the mass of the solvent (water) required to dissolve 3.45 mol of KBr. The molar mass of KBr is 119 g/mol, so 3.45 mol of KBr would weigh 409.55 g.

Since the density of the solution is given as 1.10 g/mL, the volume of the solution is:

V = m / ρ = 409.55 g / 1.10 g/mL = 372.32 mL

So, the mass of the water is:

mH2O = V * ρH2O = 372.32 mL * 1 g/mL = 372.32 g

The molality of the solution can be calculated as follows:

molality = moles of solute / mass of solvent (in kg) = 3.45 mol / 0.37232 kg = 9.27 mol/kg

Substituting the values in the formula for boiling point elevation:

ΔT = 0.512°C kg/mol * 9.27 mol/kg = 4.7384°C

The normal boiling point of pure water is 100°C, so the boiling point of the KBr solution would be:

Boiling point = 100°C + ΔT = 100°C + 4.7384°C = 104.7384°C

To know more about boiling point, refer here:

https://brainly.com/question/14771622#

#SPJ11

A 7. 15L balloon filled with gas is warmed from 256. 1K to 297. 1 K. What is the volume of the gas after it is heated?

Answers

When a 7.15L balloon filled with gas is warmed from 256.1K to 297.1K, the volume of the gas inside the balloon increases to 8.27L.

The volume of the gas in the balloon can be calculated using the Ideal Gas Law, which states that the product of pressure, volume, and temperature is proportional to the number of molecules in the gas.

This law is expressed mathematically as PV = nRT, where P is the pressure of the gas, V is its volume, n is the number of moles of gas, R is the universal gas constant, and T is the temperature in Kelvin.

In this case, the pressure and number of molecules of the gas remain constant, so we can simplify the Ideal Gas Law to V1/T1 = V2/T2, where V1 is the initial volume of the gas, T1 is the initial temperature, V2 is the final volume of the gas, and T2 is the final temperature. Solving for V2, we get V2 = (V1 x T2) / T1.

Substituting the given values, we get V2 = (7.15L x 297.1K) / 256.1K = 8.27L. Therefore, the volume of the gas in the balloon after it is heated to 297.1K is 8.27L.

In conclusion, when a 7.15L balloon filled with gas is warmed from 256.1K to 297.1K, the volume of the gas inside the balloon increases to 8.27L.

To know more about volume, visit:

https://brainly.com/question/1578538#

#SPJ11

Properties and Uses of Unsaturated Hydrocarbons
Project: Communicating Design Details
Active student guide

Answers

Answer:

Welcome to the project on communicating design details for the properties and uses of unsaturated hydrocarbons. This project aims to enhance your understanding of the characteristics and applications of unsaturated hydrocarbons.

Here are the steps to complete this project:

Step 1: Research

Research the different types of unsaturated hydrocarbons, including alkenes and alkynes. Find out their general properties, such as their reactivity, flammability, and solubility. Also, identify their uses in various industries, such as plastics, rubber, and fuel.

Step 2: Create a Design

Using your research findings, create a design to visually communicate the properties and uses of unsaturated hydrocarbons. You can use tools like Canva, PowerPoint, or other design software to create infographics, posters, or slideshows.

Step 3: Incorporate Key Information

Incorporate the key information you gathered in step 1 into your design. Make sure to include the following details:

Definitions of unsaturated hydrocarbons, alkenes, and alkynes

Properties of unsaturated hydrocarbons, including reactivity, flammability, and solubility

Applications of unsaturated hydrocarbons in various industries, such as plastics, rubber, and fuel

Examples of unsaturated hydrocarbons, such as ethene and propene for alkenes, and ethyne for alkynes

Step 4: Review and Refine

Review your design and refine it to make sure it effectively communicates the properties and uses of unsaturated hydrocarbons. Check for spelling and grammar errors, and ensure that the information is accurate and easy to understand.

Step 5: Present Your Design

Present your design to your class or teacher, and explain the properties and uses of unsaturated hydrocarbons. You can also invite feedback and questions to enhance your understanding of the topic.

In conclusion, the properties and uses of unsaturated hydrocarbons are essential for many industries. Through this project, you will gain a better understanding of unsaturated hydrocarbons and develop your communication skills to effectively present your findings. Good luck!

Explanation:

Answer:

Explanation:

The three types of unsaturated hydrocarbons is alkynes, alkenes, and aromatic hydrocarbons. Which is composed of alkynes? acetylene. brainlist

What is the molar concentration of a solution formed when. 55 mol of Ca(OH)2 are dissolved in 2. 20 liters of HOH?

Answers

The molar concentration of the solution is 0.25 M.

The molar concentration of a solution, also known as molarity, is defined as the number of moles of solute per liter of solution.

In this case, the amount of Ca(OH)2 dissolved is 0.55 mol and the volume of water used is 2.20 L. Therefore, the molar concentration can be calculated using the formula:

Molarity = moles of solute / volume of solution in litersMolarity = 0.55 mol / 2.20 LMolarity = 0.25 M

Hence, the molar concentration of the solution is 0.25 M.

To learn more about molar concentration, here

https://brainly.com/question/21841645

#SPJ4

Identify each substance based on its description. jake collected samples of two substances while he was out walking. after taking the samples home, he ran tests and found that one substance is slippery and conducts electricity in water. these properties made jake conclude that the substance is probably . the other substance continuously made bubbles of hydrogen gas when jake dropped magnesium into an aqueous solution of the substance. jake concluded that the second substance is probably .

Answers

The first substance that Jake collected is likely a base. The slippery feel is a common characteristic of bases, and the ability to conduct electricity in water indicates the presence of ions (typically hydroxide ions, OH-) which are formed when the base dissolves in water.

The second substance that Jake collected is likely an acid. The formation of hydrogen gas when magnesium is added to an acid is a common characteristic of acids. The reaction can be written as:

Mg + 2HCl → MgCl2 + H2

where HCl represents hydrochloric acid. The production of hydrogen gas indicates the presence of H+ ions, which are characteristic of acids.

To know more about substance refer here

https://brainly.com/question/13320535#

#SPJ11

When 10 moles HCl reacts with Ca(OH) 2 how many moles of H_{2}*O are made?

Answers

The amount of Ca(OH)₂ produced = 5.2 g which is calculated in the below section.

NUMBER OF MOLES of HCl = Molarity of solution x Volume of Solution

# of moles of HCl = (0.40 mol/L ) x 350 mL

                              = (0.40 mol/L ) x 0.350 L

                              = 0.14 mol

The mass of HCl that makes 0.14 mol of HCl

Mass of HCl= # of moles x molar mass of HCl

Mass of HCl = 0.14 mol x 36.5 g/ mol

Mass of HCl = 5.11g

As per Stoichiometry , 1g of HCl reacts with 1.015 g of Ca (OH)₂

So, 5.11g of HCl can react with 5.11 x 1.015  g

                                                 = 5.1865 g or 5.2 g of Ca(OH)₂

To learn more about number of moles check the link below-

https://brainly.com/question/29367909

#SPJ4

The industrial production of hydroiodic acid takes place by treatment of iodine with hydrazine N2H4: 2I2 + N2H4 = 4HI + N2 a) how many grams of I2 needed to react with 36. 7 g of N2H4? b) how many grams of HI are produced from the reaction of 115. 7 g of N2H4 with excess iodine?

Answers

a) To determine the number of grams of I2 needed to react with 36.7 g of N2H4, we need to use stoichiometry.

The balanced equation for the reaction is:

2I2 + N2H4 → 4HI + N2

From the equation, we can see that 2 moles of I2 react with 1 mole of N2H4 to produce 4 moles of HI. So, the mole ratio of I2 to N2H4 is 2:1.

First, we need to determine the number of moles of N2H4 in 36.7 g:

moles of N2H4 = mass / molar mass

moles of N2H4 = 36.7 g / 32.045 g/mol

moles of N2H4 = 1.146 mol

Since the mole ratio of I2 to N2H4 is 2:1, we need half as many moles of I2 as there are moles of N2H4:

moles of I2 = 1.146 mol / 2

moles of I2 = 0.573 mol

Finally, we can calculate the number of grams of I2 needed:

mass of I2 = moles of I2 x molar mass of I2

mass of I2 = 0.573 mol x 253.81 g/mol

mass of I2 = 145.5 g

Therefore, 145.5 grams of I2 are needed to react with 36.7 grams of N2H4.

b) To determine the number of grams of HI produced from the reaction of 115.7 g of N2H4 with excess iodine, we need to use stoichiometry again.

The balanced equation for the reaction is:

2I2 + N2H4 → 4HI + N2

From the equation, we can see that 2 moles of I2 react with 1 mole of N2H4 to produce 4 moles of HI. So, the mole ratio of HI to N2H4 is 4:1.

First, we need to determine the number of moles of N2H4 in 115.7 g:

moles of N2H4 = mass / molar mass

moles of N2H4 = 115.7 g / 32.045 g/mol

moles of N2H4 = 3.609 mol

Since the mole ratio of HI to N2H4 is 4:1, we can calculate the number of moles of HI produced:

moles of HI = 4 x moles of N2H4

moles of HI = 4 x 3.609 mol

moles of HI = 14.436 mol

Finally, we can calculate the number of grams of HI produced:

mass of HI = moles of HI x molar mass of HI

mass of HI = 14.436 mol x 127.91 g/mol

mass of HI = 1846.5 g

Therefore, 1846.5 grams of HI are produced from the reaction of 115.7 grams of N2H4 with excess iodine.

To know more about react refer here

https://brainly.com/question/14168723#

#SPJ11

Coach pollard still thinks he is really fast and so he went out to sprint at the track meet. he ran at a velocity of 4 m/s. his mass is about 68 kg. about how much kinetic energy did coach pollard use before he inevitably hurt himself after the run? ke=1/2mv^2

Answers

Coach Pollard used about 544 J of kinetic energy during his sprint.

Kinetic energy is the energy possessed by a moving object due to its motion. In this case, Coach Pollard's kinetic energy is directly proportional to his mass and the square of his velocity. As he runs faster or has more mass, his kinetic energy will increase accordingly. This is important to consider in athletics and sports where energy and power are key factors in performance.


The kinetic energy of Coach Pollard can be calculated using the formula KE = 1/2mv², where m is the mass of Coach Pollard and v is his velocity. Substituting the given values, we get KE = 1/2 × 68 kg × (4 m/s)² = 1/2 × 68 kg × 16 m²/s² = 544 J. As a result, Coach Pollard used approximately 544 J of kinetic energy throughout his sprint.


To know more about the Kinetic energy, here

https://brainly.com/question/20411782

#SPJ4

Predict the phenotypic and genotypic outcome (offspring) of a cross betweenn

two plants heterozygous for round peas

Answers

The predicted phenotypic outcome of this cross will be that 75% of the offspring will have a round phenotype, while 25% will have a wrinkled phenotype.

To predict the phenotypic and genotypic outcome of a cross between two plants heterozygous for round peas, we need to first understand the genetics involved.

Round peas are dominant over wrinkled peas, which means that the genotype for round peas can be either homozygous dominant (RR) or heterozygous (Rr), while the genotype for wrinkled peas is homozygous recessive (rr).

When two plants heterozygous for round peas are crossed (Rr x Rr), there are three possible genotypic outcomes for their offspring: RR, Rr, or rr. However, because round peas are dominant, any offspring with at least one R allele (RR or Rr) will have a round phenotype.

Therefore, the predicted phenotypic outcome of this cross will be that 75% of the offspring will have a round phenotype, while 25% will have a wrinkled phenotype. The predicted genotypic outcome will be that 25% of the offspring will be homozygous dominant (RR), 50% will be heterozygous (Rr), and 25% will be homozygous recessive (rr).

To know more about phenotype, visit:

https://brainly.com/question/20730322#

#SPJ11

which of the following characteristics would be preferred for a better resonance structure? select the correct answer below: minimal formal charges maximized bond strength negative formal charges on the most electronegative atom all of the above

Answers

The characteristic that would be preferred for a better resonance structure is maximized bond strength. Option B is correct.

Maximizing bond strength is a crucial characteristic for a better resonance structure because it leads to a more stable structure. Resonance structures are a set of contributing structures that show the delocalization of electrons in a molecule. These structures should have similar energies and contribute equally to the actual structure of the molecule. The more stable a resonance structure, the greater its contribution to the actual structure.

Formal charges are important for resonance structures, but a minimal formal charge or negative formal charges on the most electronegative atom are not the only factors that contribute to a better resonance structure. In fact, some resonance structures may have formal charges that are not minimized or negative formal charges on less electronegative atoms.

Maximizing bond strength ensures that the structure is stable and contributes significantly to the actual structure of the molecule. Therefore, maximizing bond strength is the most important characteristic for a better resonance structure. Option B is correct.

To know more about the Resonance structure, here

https://brainly.com/question/29375608

#SPJ4

Explain why I2 is a solid, Br2 is a liquid but Cl2and F2 are gases even though they are all Halogens

Answers

I₂ is a solid, Br₂ is a liquid, while Cl₂ and F₂ are gases because of their increasing molecular size and decreasing strength of their intermolecular forces.

The main factor influencing the physical states of halogens is the strength of the intermolecular forces (Van der Waals forces) between their molecules.

As you move down Group 17 in the periodic table (from F₂ to I₂), the size and mass of the halogen molecules increase. Larger molecules have a greater number of electrons, leading to stronger dispersion forces (a type of Van der Waals forces) between molecules.

For I₂, these forces are strong enough to hold the molecules together in a solid form. For Br₂, the forces are slightly weaker but still strong enough to form a liquid. However, in Cl₂ and F₂, the forces are weaker, allowing the molecules to be in a gaseous state at room temperature.

In summary, the physical states of the halogens depend on the strength of their intermolecular forces, which is influenced by the size and mass of the molecules.

To know more about intermolecular forces click on below link:

https://brainly.com/question/9007693#

#SPJ11

Explain with words how the parent nucleus’s changes in gamma decay

Answers

The changes that occur in the parent nucleus during gamma decay are limited to the emission of a gamma ray and the associated decrease in energy. The mass and atomic number of the nucleus remain unchanged.

In gamma decay, the parent nucleus does not undergo any changes in terms of its mass or atomic number. Instead, the nucleus emits a gamma ray, which is a high-energy photon. This gamma ray is released as the nucleus transitions from an excited state to a lower energy state.

The emission of a gamma ray does not affect the number of protons or neutrons in the nucleus. This means that the atomic number and mass number of the nucleus remain the same before and after gamma decay.

However, the emission of a gamma ray does result in a decrease in the energy of the nucleus. This is because gamma rays have a very high frequency and carry a lot of energy. By releasing a gamma ray, the nucleus is able to shed some of this excess energy and move to a lower energy state.

For more such questions on nucleus

https://brainly.com/question/5223117

#SPJ11

Complete the balanced molecular chemical equation for the reaction below. If no reaction occurs, write NR after the reaction arrow. Be sure to include the proper phases for all species within the reaction.

H₂SO₄(aq) + CsOH(aq) →

Answer ASAP PLEase

Answers

The balanced molecular chemical equation for the reaction below is as follows;

H₂SO₄(aq) + 2CsOH(aq) → Cs₂SO₄(aq) + 2H₂O(l)

What is a molecular chemical equation?

A chemical equation is a symbolic representation of a chemical reaction where reactants are represented on the left, and products on the right.

According to this question, a chemical equation occurs between sulfuric acid and caesium hydroxide to produce caesium sulphate and water.

The equation is said to be balanced when the number of atoms of each element on both sides of the equation are the same.

The balanced chemical equation of the reaction is as illustrated above.

Learn more about chemical equation at: https://brainly.com/question/28294176

#SPJ1

What hybridization would you expect for se when it is found in seo42-?.

Answers

When selenium (Se) is found in the compound SEO42-, it has undergone hybridization to form sp3 hybrid orbitals.

Hybridization is the process by which atomic orbitals of different energy levels combine to form hybrid orbitals with the same energy level. In SEO42-, the Se atom is bonded to four oxygen (O) atoms, and to form these bonds, the Se atom has to hybridize its orbitals.

In its ground state, Se has six valence electrons in its outermost shell - two in the 4s orbital and four in the 4p orbital. To form the four bonds with O, Se hybridizes its orbitals by promoting an electron from the 4s orbital to the 4p orbital. This gives Se four half-filled 4p orbitals, which then hybridize to form four sp3 hybrid orbitals.

Each of these hybrid orbitals is then used to form a sigma bond with one of the four O atoms.

In summary, when Se is found in SEO42-, it undergoes sp3 hybridization to form four sp3 hybrid orbitals, each of which is used to form a sigma bond with one of the four O atoms. This hybridization results in a tetrahedral arrangement of the atoms around the Se atom in the molecule.

To know more about hybridization, visit:

https://brainly.com/question/14140731#

#SPJ11

Is the solvation of borax in water an exothermic or endothermic process?.

Answers

The solvation of borax in water is an exothermic process. This means that energy is released when borax dissolves in water.

This can be seen in the fact that the temperature of the solution increases as borax dissolves in water, indicating that energy is being released into the surroundings.

The reason for this exothermic behavior is that the solvation process involves the breaking of the ionic bonds between borax molecules and the formation of new bonds between the borax ions and water molecules.

The energy released in the formation of these new bonds is greater than the energy required to break the existing bonds, resulting in a net release of energy.

To know more about borax refer to-

https://brainly.com/question/14724418

#SPJ11

Refute Dalton‟s Theory of “indivisible” atom using J.J. Thompson‟s and Rutherford Model of the atom.
Differentiate between the following.
The spectra line of white light and the spectral lines of elements. Ground state of an electron and the excited state
Calculate the wavelength the frequency and energy of the lines in the Balmer series when n2 = 3 and 5
The wave number of a line in the Lyman series is 10282383.75m-1
i. Calculate the frequency and energy of the series ii. Which line in the series is it?
Give reasons for the following: (i) The nucleus accounts for the mass of an atom. (ii) The number of protons tells us the name of the element. (iii) Atomic masses unlike the atomic numbers are not whole numbers.

6. Verify that the atomic mass of magnesium is 24.31, given the following: 24Mg= 23.985042amu, (78.99%) ; 25Mg= 24.985837 amu, (10.00% ); 26Mg= 25.982593, (11.01%)

Answers

Dalton's theory of the "indivisible" atom was refuted by the discovery of subatomic particles by J.J. Thompson and the Rutherford model.

Spectral lines of elements are discrete wavelengths of light, unlike the continuous spectrum of white light. Electrons in the ground state have the lowest energy, while those in the excited state have higher energy. The Balmer series produces specific wavelengths, frequencies, and energies when n2=3 and n1=2.

The wave number of a line in the Lyman series is 10282383.75 m^-1, with a frequency of 2.92 x 10^14 Hz and an energy of 1.94 x 10^-19 J. The nucleus accounts for an atom's mass, and the number of protons determines the element's identity.

Atomic masses are not whole numbers because they reflect the abundance of different isotopes. The atomic mass of magnesium is 24.31, calculated using the percent abundance and mass of each isotope.

Learn more about atomic masses, here:

https://brainly.com/question/17067547

#SPJ1

An object in motion stays in motion and an object at rest stays at rest until ?

Answers

An object in motion will continue to move at a constant velocity unless acted upon by an external force. This principle is known as Newton's First Law of Motion, also referred to as the law of inertia.

Inertia is the tendency of an object to resist changes in its state of motion.

Similarly, an object at rest will remain at rest unless acted upon by an external force. This means that if an object is not moving, it will continue to stay still until a force is applied to it.

Newton's First Law of Motion is a fundamental concept in physics that explains how objects behave when in motion or at rest. It is important to understand this law because it helps us to predict how objects will move and interact with each other.

Additionally, it is also essential in the design and engineering of machines and structures that require a thorough understanding of motion and force.

To know more about inertia, visit:

https://brainly.com/question/3268780#

#SPJ11

The following reaction is done at stp:
n2 (g) + 3 h 2 (g) à 2 nh 3 (g)

if i.5 l of nitrogen gas are added to an excess of hydrogen gas, how many liters of nh3 gas will form?

Answers

At STP, 1.5 L of nitrogen gas will produce 3 L of NH₃ gas.

The balanced chemical equation for the reaction is N₂(g) + 3H₂(g) --> 2NH₃(g). According to the stoichiometry, 1 mole of nitrogen gas (N₂) reacts with 3 moles of hydrogen gas (H₂) to produce 2 moles of ammonia gas (NH₃). At STP, the volume of one mole of any gas is 22.4 L.

Step 1: Calculate the moles of N₂ in 1.5 L.
Moles of N₂ = (Volume of N₂ / 22.4 L/mol) = 1.5 L / 22.4 L/mol = 0.067 moles.

Step 2: Use the stoichiometry to find the moles of NH₃ formed.
Moles of NH₃ = 2 * Moles of N₂ = 2 * 0.067 moles = 0.134 moles.

Step 3: Calculate the volume of NH₃ formed at STP.
Volume of NH₃ = (Moles of NH₃ * 22.4 L/mol) = 0.134 moles * 22.4 L/mol = 3 L.

To know more about balanced chemical equation click on below link:

https://brainly.com/question/28294176#

#SPJ11

My teacher gave me this question for homework need help


A copper sulfate solution contained 0. 100 moles of copper sulfate dissolved in 0. 500 dm3 of water. Calculate the mass of copper sulfate in 30. 0 cm3 of this solution. Relative formula mass (Mr): CuSO4 = 159. 5

Answers

The mass of copper sulfate in 30.0 cm3 of this solution is 0.957 g.

The concentration of the copper sulfate solution is given by:

c = n ÷ V

c = 0.100 mol/0.500 dm³

c = 0.200 mol/dm³

To calculate the mass of copper sulfate in 30.0 cm³ of this solution, we first need to calculate the number of moles of copper sulfate in this volume:

n = c x V

n = 0.200 mol/dm³ x (30.0 cm³ ÷ 1000 cm³/dm³)

n = 0.006 mol

The mass of copper sulfate can be calculated using its molar mass:

m = n x Mr

m = 0.006 mol x 159.5 g/mol

m = 0.957 g

To learn more about copper follow the link:

brainly.com/question/22560035

#SPJ4

What type of acid-base reactions are solely defined by how protons are given up or are taken?
what is a hydroxide ion?
what two products do all acid-base neutralization reactions produce
calculate the ph of a 0.25m solution of h3o+
calculate the ph of a 6.3x10-8m solution of h3o+
look at your answer for 4 and 5 which one is a base?
look at 4 and 5 which one is a strong acid

Answers

Type of Acid-Base Reactions: Acid-Base Neutralization Reactions. A hydroxide ion (OH-) is an anion with a single hydrogen atom and two oxygen atoms.

What is hydrogen ?

Hydrogen is the lightest of all elements, and is a colorless, odorless, tasteless, non-metallic gas. It is the most abundant element in the universe, making up around 75% of all matter. Hydrogen has three isotopes: protium (the most common), deuterium, and tritium. Hydrogen is found on Earth in compounds of other elements, such as water (H2O), and in hydrocarbons, such as natural gas (CH4). It is a key component of many fuels and can be used to generate electricity through fuel cells.

All acid-base neutralization reactions produce a salt and water. The salt will depend on the acid and base used in the reaction.The pH of a 0.25M solution of H3O+ is 0.The pH of a 6.3x10-8M solution of H3O+ is 7.21.The pH of 0.25M solution of H3O+ (0) is a base, while the pH of 6.3x10-8M solution of H3O+ (7.21) is neutral.The pH of 0.25M solution of H3O+ (0) is a strong acid, while the pH of 6.3x10-8M solution of H3O+ (7.21) is a weak acid.

To learn more about hydrogen

https://brainly.com/question/24433860

#SPJ4

Part 1. A chemist reacted 15. 0 liters of gas with in the laboratory to form Cl 2 and Use the ideal gas law equation to determine the mass of NaCl that reacted with F2 at 280. K and F 2 +2NaCl Cl 2 +2NaF Part 2. Explain how you would determine the mass of sodium chloride that can react with the same volume of fluorine gas at STP

Answers

At 280 K and 1.50 atm, the mass of NaCl required to react with F₂ is 115.83 g; at STP, the mass of NaCl required to react with F₂ is 78.39 g.

Using the ideal gas equation, we will first determine the number of moles in F2:

Volume (V) = 15 L

Temperature (T) = 280 K

Pressure (P) = 1.5 atm

Gas constant (R) = 0.0821 atm.L/Kmol

Number of mole (n) =?  

n = PV / RTn = (1.5 × 15) / (0.082 × 280)n = 0.98 mole

                                F₂ + 2NaCl → Cl₂ + 2NaF

From the balanced equation above,

1 mole of F₂ reacted with 2 moles of NaCl.

0.98 mole of F₂ will react with = 0.98 × 2

                                          = 1.96 moles of NaCl

Mole of NaCl = 1.96 moles

Molar mass of NaCl = 58.5 g/mol

Mass of NaCl =?

Mass = mole × molar massMass of NaCl = 1.98 × 58.5Mass of NaCl = 115.83 g

B. How to determine mass of NaCl needed at STP

At standard temperature and pressure (STP),

22.4 L = 1 mole of F₂

15 L = 15 / 22.4

15 L = 0.67 mole of F₂

                            F₂ + 2NaCl → Cl₂ + 2NaF

From the balanced equation above,

1 mole of F₂ reacted with 2 moles of NaCl.

0.67 mole of F₂ will react with = 0.67 × 2 = 1.34 moles of NaCl

Mole of NaCl = 1.34 moles

Molar mass of NaCl = 58.5 g/mol

Mass of NaCl =?

                Mass = mole × molar mass                Mass of NaCl = 1.34 × 58.5              Mass of NaCl = 78.39 g

Learn more about ideal gas law:

brainly.com/question/4147359

#SPJ4

How many degrees will the air temperature be different in 2050 from the air temperature in 2000? (Your answer should be a number or range of numbers. )

Answers

The air temperature difference in 2050 from 2000 could be 1.8 - 4.0 degrees Celsius.

What is temperatures?

Temperatures refer to the degree of hotness or coldness of a substance or environment. Temperatures are usually measured with thermometers, which measure the thermal energy of a system. Temperatures can be measured in Fahrenheit, Celsius, or Kelvin. In general, temperatures tend to increase as the amount of thermal energy in a system increases.

It is impossible to accurately predict the exact air temperature difference in 2050 from 2000 without more information. However, it is estimated that the global average temperature could increase anywhere from 1.8 - 4.0 degrees Celsius by 2050, compared to pre-industrial levels. Therefore, a reasonable range of the air temperature difference in 2050 from 2000 could be 1.8 - 4.0 degrees Celsius.

To learn more about temperatures

https://brainly.com/question/29867784

#SPJ4

The separation of benzene (B) from cyclohexane (C) by distillation at 1 atm is impossible because of a minimum-boiling-point azeotrope at 54. 5 mol% benzene. However, extractive distillation with furfural is feasible. For an equimolar feed, cyclohexane and benzene products of 98 and 99 mol%, respectively, can be produced. Alternatively, the use of a three-stage pervaporation process, with selectivity for benzene using a polyethylene membrane, has received attention, as discussed by Rautenbach and Albrecht [47]. Consider the second stage of this process, where the feed is 9,905 kg/h of 57. 5 wt% B at 75C. The retentate is 16. 4 wt% benzene at 67. 5C and the permeate is 88. 2 wt% benzene at 27. 5C. The total permeate mass flux is 1. 43 kg/m2-h and selectivity for benzene is 8. Calculate flow rates of retentate and permeate in kg/h and membrane surface area in m2

Answers

The retentate flow rate is 5,021.862 kg/h and the permeate flow rate is 5,021.862 kg/h. The membrane surface area required is 3,517.948 m².

What is permeate flow ?

Permeate flow is the rate at which a fluid passes through a membrane. It is a measure of the membrane's permeability, which is the ability of a substance to pass through a membrane. Permeate flow is used in many industrial processes, such as purification of fluids, separation of compounds, and concentration of liquids.

The first step is to calculate the mass flow rate of the feed. This is given by the equation:

Mass flow rate (kg/h) = Feed flow rate (kg/h) x Feed concentration (wt%)

Mass flow rate = 9,905 kg/h x 57.5 wt% = 5,686.625 kg/h

Next, we need to calculate the flow rate of the retentate and permeate in kg/h. This is given by the equation:

Flow rate (kg/h) = Mass flow rate (kg/h) x Retentate/Permeate concentration (wt%)

Retentate flow rate = 5,686.625 kg/h x 16.4 wt% = 931.939 kg/h

Permeate flow rate = 5,686.625 kg/h x 88.2 wt% = 5,021.862 kg/h

Finally, we need to calculate the membrane surface area in m². This is given by the equation:

Membrane surface area (m²) = Permeate flow rate (kg/h) / Total permeate mass flux (kg/m²-h)

Membrane surface area = 5,021.862 kg/h / 1.43 kg/m²-h = 3,517.948 m².

To learn more about permeate flow

https://brainly.com/question/31377281

#SPJ4

Other Questions
why do you think the h-bonds only last a short time before breaking and reforming? Which of these shapes have rectangular cross sections options. Orectangular prism O triangular prism cylinder D cone cy Osquare pyramid triangular pyramid The stem-and-leaf plot shows the number of push-ups done by each student in a Physical Education class. What is the mode of the number of push-ups? 4A local pet store expands and begins selling exotic organisms. The exotic organisms areeasy to care for when they are younger, but become very difficult to control as they getolder. The owners often decide to release their new pets into the local environmentrather than continue to care for them. The released animals do not have any naturalenemies and their population expands unchecked. How will this affect the biodiversity ofthe ecosystem?FIt introduces an invasive species, which will increase the biodiversity of theecosystem. It introduces an invasive species, which will decrease the biodiversity of theGecosystem. H It introduces a native species which will not affect the biodiversity of the ecosystem. It reintroduces a native species, which will decrease the biodiversity of theecosystem. which big us city just launched a new ad campaign to boost post-pandemic tourism? The electrostatic force between two like ions which are separated by a distance of 0.5 nm is 3.7 nn. what is the magnitude of the charge on each ion? The claim is that for 12 AM body temperatures, the mean is >98. 6F. The sample size is n=8 and the test statistic is t= -2. 687what is p value? Solve the following quadratic function by utilizing the square root method. Y=xsquared minus nine Jill can make 50 flash cards every 20 minutes COMPLETE THE TABLE USING EQUIVALENT RATIOS.MINUTES NUMBER OF CARDS 50 3020 ----------36 Which list correctwhich list correctly identifies the steps to solving a word problem?ly identifies the steps to solving a word problem? A certain drug is used to treat asthma. In a clinical trial of the drug, 30 of 298 treated subjects experienced headaches (based on data from the manufacturer). The accompanying calculator display shows results from a test of the claim that less than 9% of treated subjects experienced headaches. Use the normal distribution as an approximation to the binomial distribution and assume a 0.01 significance level to complete parts (a) through (e) below.1-PropZTestprop0.09B.Upper H 0 : p less than 0.09H0: p Chromium, Cr, has the following isotopic masses and fractional abundances:Mass Number Isotopic Mass (amu) Fractional Abundance50 49.9461 0.043552 51.9405 0.837953 52.9407 0.095054 53.9389 0.0236What is the atomic mass of chromium Use the compound-interest formula to find the account balance A, where P is principal, r is interest rate, n is number of compounding periods per year, t is time, in years, and A is account balance. P r compounded t $ % Daily Martha wants to purchase Juanitas land, but Juanita refuses to sell it to Martha. Martha begins using subpoenas, court orders, and other formal legal procedures in an unrelenting effort to force Juanita to sell. This isGroup of answer choicesa .not a tortb. appropriationc. wrongful interference with a contractd. abuse of process What are two algebraic expressions for the square root of x? (what are two ways of writing the square root of x?) How many grams of oxygen would be produced by electrolysis of 83.7 grams of water?H2O --> O2 + H2 Create a story context for the following expressions ( 5 1/4 - 2 1/8) divided by 4 and 4 x ( 4. 8/0. 8) What is 4x+2/39=5x-2/42? There were 2 rainstorms in sinai last month . before storm 1, the air the surface was 21 c. before storm 2 , the air temperature at the surface was 29 c . the temperature of areas surrounding sinai was the same before both storms . there was the same amount of water vapor in the air parcels before both storms. which would habe more rainfall? PLEASE HELP WILL MARK BRAINLY What is the area of a regular pentagon with a side of 5 ? Round the answer to the nearest tenth. TYPE THE NUMBER ONLY