A rescue plane wants to drop supplies to isolated mountain climbers on a rocky ridge 235 m below. If the plane is traveling horizontally with a speed of 250 km/hr (69.4 m/s) how far in advance of the recipients (horizontal distance) must the goods be dropped

Answers

Answer 1

Answer:

481 m

Explanation:

To fall 235 m, the time required is

t = √(2H/g)

t= √(2[tex]\times[/tex]235/9.8)

t=6.92 seconds.

The supplies will travel forward

6.92 [tex]\times[/tex] 69.4 ≈ 481 m

Therefore, the goods must be dropped 481  m in advance of the recipients.


Related Questions

The motion of a free falling body is an example of __________ motion​

Answers

Answer:

accelerated

Explanation:

The motion of the body where the acceleration is constant is known as uniformly accelerated motion. The value of the acceleration does not change with the function of time.

Newton's second law of motion

A cylindrical capacitor is made of two concentric cylinders. The inner cylinder has radius r1 = 4 mm, and the outer one a radius r2= 8 mm. The common length of the cylinders is L = 150 m. What is the potential energy stored in this capacitor when a potential difference V = 4 V is applied between the inner and outer cylinder?

Answers

Answer:

E = 9.62*10^-8 J

Explanation:

The energy stored in a capacitor is given by the following formula:

[tex]E=\frac{1}{2}CV^2[/tex]     (1)

E: energy stored

C: capacitance

V: potential difference of the capacitor = 4 V

The capacitance for a concentric cylindrical capacitor is:

[tex]C=\frac{2\pi \epsilon_o L}{ln(\frac{r_2}{r_1})}[/tex]     (2)

L: length of the capacitor = 150m

r2: radius of the outer cylinder  = 8mm = 8*10^-3m

r1: radius of the inner cylinder = 4mm = 4*10^-3m

εo: dielectric permittivity of vacuum = 8.85*10^-12C^2/Nm^2

You replace the expression (2) into the equation (1) and replace the values of all parameters:

[tex]E=\frac{1}{2}(\frac{2\pi \epsilon_o L}{ln(\frac{r_2}{r_1})})V^2\\\\E=\frac{\pi \epsilon_o L}{ln(\frac{r_2}{r_1})}V^2\\\\E=\frac{\pi (8.85*10^{-12}C^2/Nm^2)(150m)}{ln(\frac{8*10^{-3}m}{4*10^{-3}m})}(4V)^2\\\\E=9.62*10^{-8}J[/tex]

The energy stored in the cylindrical capacitor is 9.62*10-8 J

How does the engine get the spacecraft to space?

Answers

Answer:

An electric power source is used to ionize fuel into plasma. Electric fields heat and accelerate the plasma while the magnetic fields direct the plasma in the proper direction as it is ejected from the engine, creating thrust for the spacecraft.

Explanation:

To increase the energy of an electromagnetic wave, which property should you decrease?
Shift,
Frequency
Speed
Wavelength

Answers

the correct answer is wavelength

The increase in the energy of an electromagnetic wave can be achieved only by decreasing the wavelength. Hence, option (d) is correct.

The given problem is based on the fundamentals of electromagnetic wave and the energy stored in an electromagnetic wave.

The electromagnetic wave stores the energy in the form of radiations also known as the electromagnetic radiations. These radiations can take the several forms such as radio waves, microwaves, X-rays and gamma rays.

The mathematical expression for the energy carried out by the  electromagnetic waves is given as,

[tex]E = h \times \nu\\\\E = \dfrac{h \times c}{ \lambda}[/tex]

Here,

h is the Planck's constant.

[tex]\nu[/tex] is the frequency of the electromagnetic wave.

c is the speed of light.

[tex]\lambda[/tex] is the wavelength of wave.

Clearly, the energy of electromagnetic waves is directly proportional to the frequency of wave and inversely proportional to wavelength. So, decreasing the wavelength, we can easily increase the energy of electromagnetic wave.

Thus, we can conclude that the increase in the energy of an electromagnetic wave can be achieved only by decreasing the wavelength. Hence, option (d) is correct.

Learn more about the electromagnetic wave here:

https://brainly.com/question/3101711

If the frequency is 5 Hz, determine the speed of the wave in the spring?? Can someone pls help me??

Answers

Answer:

    The speed of the wave is [tex]31.42 rad/s[/tex]

Explanation:

yes, we can.

Given data

frequency = 5 Hz

we know that the period T is expressed as

[tex]T= \frac{1}{f} \\[/tex]

Substituting we have

[tex]T= \frac{1}{5} \\T= 0.2s[/tex]

also the expression for angular velocity is

ω= [tex]\frac{2\pi}{T}[/tex]

Substituting we have

ω= [tex]\frac{2*3.142}{0.2}[/tex]

ω= [tex]\frac{6.284}{0.2} \\[/tex]

ω= [tex]31.42 rad/s[/tex]

A coin is placed 17.0 cm from the axis of a rotating turntable of variable speed. When the speed of the turntable is slowly increased, the coin remains fixed on the turntable until a rate of 26.0 rpm (revolutions per minute) is reached, at which point the coin slides off. What is the coefficient of static friction between the coin and the turntable?

Answers

Answer: The coefficient of static friction between the coin and the turntable is 0.13.

Explanation:

As we know that,

   Centripetal force = static frictional force

   [tex]\frac{mv^{2}}{r} = F_{s}[/tex]

or,  [tex]\frac{mv^{2}}{r} = \mu_{s} \times m \times g[/tex]

     v = [tex]\sqrt{\mu_{s} \times r \times g}[/tex]

or,  [tex]\mu_{s} = \frac{v^{2}}{rg}[/tex] ......... (1)

Here, it is given that

       r = 17 cm,      [tex]\omega[/tex] = 26 rpm,    

and  v = [tex]r \omega[/tex] ..........(2)

Putting equation (2) in equation (1) we get the following.

[tex]\mu_{s} = \frac{r^{2}\omega^{2}}{rg}[/tex]

            = [tex]\frac{17 \times 10^{-2} \times (26 \times [\frac{2 \times \pi}{60}]^{2})}{9.8}[/tex]

            = 0.128

            = 0.13 (approx)

Thus, we can conclude that the coefficient of static friction between the coin and the turntable is 0.13.

Imagine that the ball on the left is given a nonzero initial velocity in the horizontal direction, while the ball on the right continues to fall with zero initial velocity. What horizontal speed vx must the ball on the left start with so that it hits the ground at the same position as the ball on the right? Express your answer in meters per second to two significant figures.

Answers

Answer:

vₓ = xg/2y

Explanation:

In this question, let us  find the time it takes for the ball on the right that has zero initial velocity to reach the ground.

By newton equation of motion we know that

y = v₀ t - ½ g t²

t = 2y / g

This is the time it takes for the ball on the right to reach the ground; at this time the ball on the left travels a distance

vₓ = x/t

vₓ = xg/2y

vₓ = xg/2y

Where we assume that x and y are known.

Answer:

The answer is 3.0

Explanation:

Upon impact, bicycle helmets compress, thus lowering the potentially dangerous acceleration experienced by the head. A new kind of helmet uses an airbag that deploys from a pouch worn around the rider's neck. In tests, a headform wearing the inflated airbag is dropped onto a rigid platform; the speed just before impact is 6.0 m/s. Upon impact, the bag compresses its full 12.0 cm thickness, slowing the headform to rest.What is the acceleration, in g's, experienced by the headform? (An acceleration greater than 60g is considered especially dangerous.)

Answers

Answer:

This is approximately 16 g's.

Explanation:

For the person’s head to stop falling, the rigid platform must exert a force that is equal to the sum of weight and force that caused the velocity to decrease from 6 m/s to 0 m/s.

Weight = m * -9.8

Let’s use the following equation to determine the acceleration.

vf^2 = vi^2 + 2 * a * d

0 = 36 + 2 * a * 0.12

a = -36 ÷ 0.24 = -150 m/s^2

The acceleration is negative, because it caused the velocity to decrease.

Total acceleration = -159.8 m/s^2

To determine the number of g, divide this by -9.8.

N g’s = -159.8 ÷- 9.8

This is approximately 16 g's.

For the circuit, suppose C=10µF, R1=1000Ω, R2=3000Ω, R3=4000Ω and ls=1mA. The switch closes at t=0s.1) What is the value of Vc (in volts) just prior to the switch closing? Assume that the switch had been open for a long time. 2) For the circuit above, what is the value of Vc after the switch has been closed for a long time?
3) What is the time constant of the circuit (in seconds)? Enter the answer below without units.
4) What is the value of Vc at t = 2msec (in volts).

Answers

Answer:

1.) Vc = 1V

2.) Vc = 2.7V

3.) Time constant = 0.03

4.) V = 2.53V

Explanation:

1.) The value of Vc (in volts) just prior to the switch closing

The starting current = 1mA

With resistance R1 = 1000 ohms

By using ohms law

V = IR

Vc = 1 × 10^-3 × 1000

Vc = 1 volt.

2.) The value of Vc after the switch has been closed for a long time.

R2 and R3 are in parallel to each other. Both will be in series with R1

The equivalent resistance R will be

R = (R2 × R3)/R2R3 + R1

Where

R1 = 1000Ω,

R2 = 3000Ω,

R3 = 4000Ω

R = (4000×3000)/(4000+3000) + 1000

R = 12000000/7000 + 1000

R = 1714.3 + 1000

R = 2714.3 ohms

By using ohms law again

V = IR

Vc = 1 × 10^-3 × 2714.3

Vc = 2.7 volts

3.) The time constant = CR

Time constant = 10 × 10^-6 × 2714.3

Time constant = 0.027

Time constant = 0.03 approximately

4.) The value of Vc at t = 2msec (in volts). Can be calculated by using the formula

V = Vce^-t/CR

Where

Vc = 2.7v

t = 2msec

CR = 0.03

Substitute all the parameters into the formula

V = 2.7 × e^-( 2×10^-3/0.03)

V = 2.7 × e^-(0.0667)

V = 2.7 × 0.935

V = 2.53 volts

A charge q1 of -5.00 × 10‐⁹ C and a charge q2 of -2.00 × 10‐⁹ C are separated by a distance of 40.0 cm. Find the equilibrium position for a third charge of +15.0 × 10‐⁹ C.

P.S. 10-⁹ is 10^-9

Answers

Answer:

Explanation:

The equilibrium position will be in between q₁ and q₂ .

Let this position of third charge be x distance from q₁

q₁ will pull the third charge towards it with force F₁

F₁ =9 x 10⁹x 5 x 10⁻⁹x15 x 10⁻⁹ / x²

= 675 x 10⁻⁹ / x²

q₂ will pull the third charge towards it with force F₂

F₂ =9 x 10⁹x 2 x 10⁻⁹x15 x 10⁻⁹ /( .40-x )²

= 270 x 10⁻⁹ / ( .40-x )²

For equilibrium

675 x 10⁻⁹ / x² = 270 x 10⁻⁹ / ( .40-x )²

5  / x² = 2 / ( .40-x )²

( .40-x )² / x² = 2/5 = .4

.4 - x / x = .632

.4 - x = .632x

.4 = 1.632 x

x = .245 .

24.5 cm

so third charge must be placed at 24.5 cm away from q₁ charge.

A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from left to right, through a uniform magnetic field, with the plane of the loop remaining perpendicular to the plane of the paper at all times. Determine the direction of the current induced in the loop as it swings past the locations labeled (a) I and (b) II. Specify the direction of the current in terms of the points x, y, and z on the loop (e.g., x→y→z or z→y→x). The points x, y, and z lie behind the plane of the paper. What is the direction of the induced current at the locations (c) I and (d) II when the loop swings back, from right to left?

Answers

Complete Question

The complete question iws shown on the first uploaded image  

Answer:

a

    [tex]y \to z \to x[/tex]

b

  [tex]x \to z \to y[/tex]

Explanation:

Now looking at the diagram let take that the magnetic field is moving in the x-axis

 Now the magnetic force is mathematically represented as

             [tex]F = I L[/tex] x B

Note (The x is showing cross product )

Note the force(y-axis) is perpendicular to the field direction (x-axis)

Now when the loop is swinging forward

 The motion of the loop is  from   y to z to to x to y

Now since the force is perpendicular to the motion(velocity) of the loop

Hence the force would be from z to y and back to z  

and from lenze law the induce current opposes the force so the direction will be from y to z to x

Now when the loop is swinging backward

   The motion of the induced current will now be   x to z to y

 

g A 47.3 kg girl is standing on a 162 kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.36 m/s relative to the plank. What is her velocity relative to the ice surface

Answers

Answer:

Explanation:

mass of the girl m₁ = 47.3 kg

mass of the plank m₂ = 162 kg

velocity of the girl with respect to surface = v₁

velocity of plank with respect to surface = v₂

v₁+ v₂ = 1.36

v₂ = 1.36 - v₁

applying conservation of momentum law to girl and plank.

m₁v₁ = m₂v₂

47.3 x v₁ = 162 x ( 1.36 - v₁ )

47.3 v₁ = 220.32 - 162v₁

209.3 v₁ = 220.32

v₁ = 1.05 m /s

A carnot heat engine has an efficiency of 0.800. if it operates between a deep lake with a constant temperature of 280.0 k and a hot reservoir, what is the temperature of the hot reservoir?

Answers

i believe that the answer is

In a football game a kicker attempts a field goal. The ball remains in contact with the kicker's foot for 0.0580 s, during which time it experiences an acceleration of 376 m/s2. The ball is launched at an angle of 59.9° above the ground. Determine the (a) horizontal and (b) vertical components of the launch velocity.

Answers

Answer:

V₀ₓ = 10.94 m/s

V₀y = 18.87 m/s

Explanation:

To find the launch velocity, we use 1st equation of motion.

Vf = Vi + at

where,

Vf = Final Velocity of Ball = Launch Speed = V₀ = ?

Vi = Initial Velocity = 0 m/s (Since ball was initially at rest)

a = acceleration = 376 m/s²

t = time = 0.058 s

Therefore,

V₀ = 0 m/s + (376 m/s²)(0.058 s)

V₀ = 21.81 m/s

Now, for x-component:

V₀ₓ = V₀ Cos θ

where,

V₀ₓ = x-component of launch velocity = ?

θ = Angle with horizontal = 59.9⁰

V₀ₓ = (21.81 m/s)(Cos 59.9°)

V₀ₓ = 10.94 m/s

for y-component:

V₀ₓ = V₀ Sin θ

where,

V₀y = y-component of launch velocity = ?

θ = Angle with horizontal = 59.9⁰

V₀y = (21.81 m/s)(Sin 59.9°)

V₀y = 18.87 m/s

If a 2,000-kg car hits a tree with 500 N of force over a time of 0.5 seconds,
what is the magnitude of its impulse?
O A. 14,700 kg-m/s
B. 2,500 kg-m/s
C. 250 kg-m/s
D. 10,000 kg-m/s

Answers

Answer:

c 250 kg-m/s

Explanation:

happy to help!!

Answer: 250 kg

Explanation:

Mass Center Determine the coordinates (x, y) of the center of mass of the area in blue in the figure below. Answers: x=(3)/(8)a and y=(2)/(5)h

Answers

Explanation:

The x and y coordinates of the center of mass are:

xcm = ∫ x dm / m = ∫ x ρ dA / ∫ ρ dA

ycm = ∫ y dm / m = ∫ y ρ dA / ∫ ρ dA

Assuming uniform density, the center of mass is also the center of area.

xcm = ∫ x dA / ∫ dA = ∫ x y dx / A

ycm = ∫ y dA / ∫ dA = ∫ ½ y² dx / A

First, let's find the area:

A = ∫ y dx

A = ∫₀ᵃ (-h/a² x² + h) dx

A = -⅓ h/a² x³ + hx |₀ᵃ

A = -⅓ h/a² (a)³ + h(a)

A = ⅔ ha

Now, let's find the x coordinate of the center of mass:

xcm = ∫ x y dx / A

xcm = ∫₀ᵃ x (-h/a² x² + h) dx / (⅔ ha)

xcm = ∫₀ᵃ (-h/a² x³ + hx) dx / (⅔ ha)

xcm = (-¼ h/a² x⁴ + ½ hx²) |₀ᵃ / (⅔ ha)

xcm = (-¼ h/a² (a)⁴ + ½ h(a)²) / (⅔ ha)

xcm = (¼ ha²) / (⅔ ha)

xcm = ⅜ a

Next, we find the y coordinate of the center of mass:

ycm = ∫ y² dx / A

ycm = ∫₀ᵃ ½ (-h/a² x² + h)² dx / (⅔ ha)

ycm = ∫₀ᵃ ½ (h²/a⁴ x⁴ − 2h²/a² x² + h²) dx / (⅔ ha)

ycm = ½ (⅕ h²/a⁴ x⁵ − ⅔ h²/a² x³ + h² x) |₀ᵃ / (⅔ ha)

ycm = ½ (⅕ h²/a⁴ (a)⁵ − ⅔ h²/a² (a)³ + h² (a)) / (⅔ ha)

ycm = ½ (⁸/₁₅ h²a) / (⅔ ha)

ycm = ⅖ h

You and a friend frequently play a trombone duet in a jazz band. During such performances it is critical that the two instruments be perfectly tuned. Since you take better care of your trombone, you decide to use your instrument as the standard. When you produce a tone that is known to be 470 Hz and your friend attempts to play the same note, you hear 4 beats every 3.00 seconds. Your ear is good enough to detect that your trombone is at a higher frequency. Determine the frequency of your friend's trombone. (Enter your answer to at least 1 decimal place.)

Answers

Answer:

f₂ = 468.67 Hz

Explanation:

A beat is a sudden increase and decrease of sound. The beats are produced through the interference of two sound waves of slightly different frequencies. Now we have the following data:

The higher frequency tone = f₁ = 470 Hz

No. of beats = n = 4 beats

Time period = t = 3 s

The lower frequency note = Frequency of Friend's Trombone = f₂ = ?

Beat Frequency = fb

So, the formula for beats per second or beat frequency is given as:

fb = n/t

fb = 4 beats/ 3 s

fb = 1.33 Hz

Another formula for beat frequency is:

fb = f₁ - f₂

f₂ =  f₁ - fb

f₂ = 470 Hz - 1.33 Hz

f₂ = 468.67 Hz

A lens of focal length 12cm forms an
three times the size of the
to the object. The distance between the object and the image is what

Answers

b) 16 cm

Magnification, m = v/u

3 = v/u

⇒ v = 3u

Lens formula : 1/v – 1/u = 1/f

1/3u = 1/u = 1/12

-2/3u = 1/12

⇒ u = -8 cm

V = 3 × (-8) = -24

Distance between object and image = u – v = -8 – (-24) = -8 + 24 = 16 cm

At the equator, the earth's field is essentially horizontal; near the north pole, it is nearly vertical. In between, the angle varies. As you move farther north, the dip angle, the angle of the earth's field below horizontal, steadily increases. Green turtles seem to use this dip angle to determine their latitude. Suppose you are a researcher wanting to test this idea. You have gathered green turtle hatchlings from a beach where the magnetic field strength is 50 mu T and the dip angle is 56 degree. You then put the turtles in a 2.0 m diameter circular tank and monitor the direction in which they swim as you vary the magnetic field in the tank. You change the field by passing a current through a 50-tum horizontal coil wrapped around the tank. This creates a field that adds to that of the earth. In what direction should current pass through the coil, to produce a net field in the center of the tank that has a dip angle of 62 degree ? What current should you pass through the coil, to produce a net field in the center of the tank that has a dip angle of 62 degree ? Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

Direction of current = clockwise

Magnitude of current, I = 0.36 A

Explanation:

The magnetic field strength, [tex]B_{E} = 50 \mu T[/tex]

The angle of dip, ∅ = 56°

The net magnetic field in the center of the tank is:

[tex]B_{net} = (B_{E} cos \phi ) (\hat{x} ) + ( B + B_{E} sin \phi)(-\hat{y})\\B_{net} = (50 cos 56 ) (\hat{x} ) + ( B +50 sin 56)(-\hat{y})\\B_{net} = (28 \mu T ) (\hat{x} ) + ( B +41.4 \mu T)(-\hat{y})\\[/tex]

The direction of the net magnetic field is:

[tex]\phi = tan^{-1} \frac{B + 41.4 }{28} \\tan \phi = \frac{B + 41.4 }{28}\\\phi = 62^0\\tan 62 = \frac{B + 41.4 }{28}\\28 tan 62 = B + 41.4\\52.66 = B + 41.4\\B = 11.26 \mu T[/tex]

The magnetic field due to the coil:

[tex]B = \frac{\mu_{0}NI }{2r} \\11.26 * 10^{-6} = \frac{4\pi * 10^{-7} * 50 *I }{2 *1}\\I = \frac{2 * 11.26 * 10^{-6}}{4\pi * 10^{-7} * 50} \\I = 0.36 A[/tex]

The current must be in clockwise direction to produce the field in downward direction

A 1,150-kg car moving east at 80 km/h collides head-on with a 1,900-kg car moving west at 40 km/h , and the two cars stick together. It’s initial speed is 5km/h. How much KE is lost in the collision?

Answers

Answer:

Ask a pro,bro

Explanation:

I just ryhmed

There are seven ___ included in the periodic table.

Answers

we have seven groups in the periodic table

Calcular el módulo del vector resultante de dos vectores fuerza de 9 [N] y 12 [N] concurrentes en un punto o, cuyas direcciones forman un ángulo de a) 30˚ b) 45˚ y c) 90˚

Answers

Answer:

a) 20.29N

b) 19.43N

c) 15N

Explanation:

To find the magnitude of the resultant vectors you first calculate the components of the vector for the angle in between them, next, you sum the x and y component, and finally, you calculate the magnitude.

In all these calculations you can asume that one of the vectors coincides with the x-axis.

a)

[tex]F_R=(9cos(30\°)+12)\hat{i}+(9sin(30\°))\hat{j}\\\\F_R=(19.79N)\hat{i}+(4.5N)\hat{j}\\\\|F_R|=\sqrt{(19.79N)^2+(4.5N)^2}=20.29N[/tex]

b)

[tex]F_R=(9cos(45\°)+12)\hat{i}+(9sin(45\°))\hat{j}\\\\F_R=(18.36N)\hat{i}+(6.36N)\hat{j}\\\\|F_R|=\sqrt{(18.36N)^2+(6.36N)^2}=19.43N[/tex]

c)

[tex]F_R=(9cos(90\°)+12)\hat{i}+(9sin(90\°))\hat{j}\\\\F_R=(12N)\hat{i}+(9N)\hat{j}\\\\|F_R|=\sqrt{(12N)^2+(9N)^2}=15N[/tex]

The drawing shows four sheets of polarizing material, each with its transmission axis oriented differently. Light that is polarized in the vertical direction is incident from the left and has an average intensity of 32 W/m2. Determine the average intensity of the light that emerges on the right in the drawing (a) when sheet A alone is removed, (b) when sheet B alone is removed, (c) when sheet C alone is removed, and (d) when sheet D alone is removed.

Answers

Answer:

Explanation:

When sheet A is removed

[tex]I_B=32\cos^230=24W/m^2\\\\I_C=24 \cos^260=6W/m^2\\\\I_D=6\cos^230=4.5W/m^2[/tex]

When sheet B is removed

[tex]I_A=32\cos^20=32W/m^2\\\\I_C=24 \cos^290=0W/m^2\\\\I_D=0\cos^230=0W/m^2[/tex]

When sheet C is removed

[tex]I_A=32\cos^20=32W/m^2\\\\I_D=32 \cos^230=24W/m^2\\\\I_B=24\cos^290=0W/m^2[/tex]

When sheet D is removed

[tex]I_A=32\cos^20=32W/m^2\\\\I_B=32\cos^230=24W/m^2\\\\I_C=24\cos^260=6W/m^2[/tex]


6. A capacitor of charge 3 x 10 coulomb has a potential of 50volts. What is the capacitance of the capacitor?

Answers

Answer:

Explanation:

Sry

Answer:

C = Q/V

where C is capacitance, Q is charge and V is voltage

C = (3×10)/50

C = 30/50

= 0.6F where F is in Farads

A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The lift is performed in three stages, each requiring a vertical distance of 5.90 m: (a) the initially stationary spelunker is accelerated to a speed of 2.30 m/s; (b) he is then lifted at the constant speed of 2.30 m/s; (c) finally he is decelerated to zero speed. How much work is done on the 69.0 kg rescue by the force lifting him during each stage

Answers

Answer:

   W₃ = 3310.49 J ,  W3 = 3310.49 J

Explanation:

We can solve this exercise in parts, the first with acceleration, the second with constant speed and the third with deceleration. Therefore it is work we calculate it in these three sections

We start with the part with acceleration, the distance traveled is y = 5.90 m and the final speed is v = 2.30 m / s. Let's calculate the acceleration with kinematics

       v2 = v₀² + 2 a₁ y

as they rest part of the rest the ricial speed is zero

        v² = 2 a₁ y

        a₁ = v² / 2y

        a₁ = 2.3² / (2 5.90)

        a₁ = 0.448 m / s²

with this acceleration we can calculate the applied force, using Newton's second law

         F -W = m a₁

         F = m a₁ + m g

         F = m (a₁ + g)

         F = 69 (0.448 + 9.8)

         F = 707.1 N

Work is defined by

         W₁ = F.y = F and cos tea

As the force lifts the man, this and the displacement are parallel, therefore the angle is zero

          W₁ = 707.1 5.9

           W₁ = 4171.89 J  W3 = 3310.49 J

Let's calculate for the second part

the speed is constant, therefore they relate it to zero

           F - W = 0

           F = W

           F = m g

           F = 60 9.8

           F = 588 A

the job is

           W² = 588 5.9

            W2 = 3469.2 J

finally the third part

in this case the initial speed is 2.3 m / s and the final speed is zero

           v² = v₀² + 2 a₂ y

            0 = vo2₀² + 2 a₂ y

            a₂ = -v₀² / 2 y

            a₂ = - 2.3²/2 5.9

            a2 = - 0.448 m / s²

we calculate the force

            F - W = m a₂

            F = m (g + a₂)

            F = 60 (9.8 - 0.448)

            F = 561.1 N

we calculate the work

            W3 = F and

            W3 = 561.1 5.9

          W3 = 3310.49 J

total work

          W_total = W1 + W2 + W3

          W_total = 4171.89 +3469.2 + 3310.49

           w_total = 10951.58 J

Calculate the Reynold's number using a viscosity of air as 1.81E-05 kilograms/(meters-seconds), the density of air (see above), the diameter as 0.15 m, and, from the data, 0.89 m/s.

Answers

Answer:

8924.6

Explanation:

We are given that

Viscosity of air,[tex]\eta=1.81\times 10^{-5}kg/m-s[/tex]

Density of air,[tex]\rho=1.21kg/m^3[/tex]

Diameter,d=0.15 m

v=0.89m/s

We have to find the Reynold's number.

Reynold's number,R=[tex]\frac{\rho vd}{\eta}[/tex]

Substitute the values then we get

[tex]R=\frac{1.21\times 0.89\times 0.15}{1.81\times 10^{-5}}[/tex]

R=[tex]8924.6[/tex]

Hence, the value of Reynold's number=8924.6

A girl throws a ball of mass 0.80 kg against a wall. The ball strikes the wall horizontally with a speed of 25 m/s, and it bounces back with this same speed. The ball is in contact with the wall 0.050 s. What is the magnitude of the average force exerted on the wall by the ball

Answers

Answer:

F = 800N

the magnitude of the average force exerted on the wall by the ball is 800N

Explanation:

Applying the impulse-momentum equation;

Impulse = change in momentum

Ft = m∆v

F = (m∆v)/t

Where;

F = force

t = time

m = mass

∆v = v2 - v1 = change in velocity

Given;

m = 0.80 kg

t = 0.050 s

The ball strikes the wall horizontally with a speed of 25 m/s, and it bounces back with this same speed.

v2 = 25 m/s

v1 = -25 m/s

∆v = v2 - v1 = 25 - (-25) m/s = 25 +25 = 50 m/s

Substituting the values;

F = (m∆v)/t

F = (0.80×50)/0.05

F = 800N

the magnitude of the average force exerted on the wall by the ball is 800N

It has been suggested that rotating cylinders about 12.5 mi long and 3.99 mi in diameter be placed in space and used as colonies. What angular speed must such a cylinder have so that the centripetal acceleration at its surface equals the free-fall acceleration on Earth

Answers

Answer:

The correct answer to the following question will be "0.0562 rad/s".

Explanation:

[tex]r =\frac{3.9}{2}\times 1609.34[/tex]

  [tex]=3138.213\ m[/tex]

As we know,

⇒  [tex]\omega^2 \ r=g[/tex]

On putting the values, we get

⇒  [tex]\omega^2\times 3138.213=9.8[/tex]

⇒  [tex]\omega = \sqrt{\frac{9.8}{3138.213}}[/tex]

⇒  [tex]\omega = 0.0562 \ rad /s[/tex]

In which of the following is negative work performed by an individual?
A) A mover picks up a packing box up off the floor.
B) A person leans against a wall.
C) A shopper lowers a can of beans from a store shelf into the grocery cart.

Answers

Answer:

c

Explanation:

When a ball is dropped from a window, how much is the initial velocity in m/s2 ?

Answers

Explanation:

The initial velocity is 0 m/s.

The initial acceleration is -9.8 m/s².

Other Questions
Who was Oklahoma's first female attorney general, its first African American female state senator, and its first federallyappointed African American female judge?A Vicki Miles-LaGrangeB.Mary FallinC. Alma WilsonD Leona Mitchell What is the color of litmus solution in sodium chloride? Solve the equation sin sq x = 3cos sq x.The value of x that satisfies the equation if x lies in the second quadrant is .The value of x that satisfies the equation if x lies in the third quadrant is how have the laws passed to reduce people's exposure to secondhand smoke has a positive impact on health? Isotopes: A. of a given element have different numbers of neutrons B. are atoms that have gained or lost electrons C. of a given element have equal numbers of neutrons D. of a given element have equal numbers of protons and neutrons E. are atoms of different elements which have the same mass Prove that [tex]x {}^{2} - 2[/tex]will never be divisible by 3. Find the value of the trig function indicated I need to finish this plZ can you say Combine the following sentences using appropriate conjunctions to have just one sentence. 2.a) One effect of studying abroad is a students greater understanding. b) The effect is important. c) The understanding is of an educational system. d) The system is different. I have seen that there is a new species of spider found that has wings. Is this true? If so do they fly or glide? And are they found in the US? State the tone-semitone arrangement of the following scales:1. Natural minor scale2. Harmonic minor scale3. Melodic minor scale Which process does not release carbon dioxide to the atmosphere? a. Decomposition of animals b. Photosynthesis of plants c. Respiration of animals d. Respiration of plants 4. Which sentence is correct?I have known them since a long time.b. I have knew them for a long time.C. T have known them for a long.d. I knew them for a long time. Which machine would you use to apply a chemical solution on mango fruits which have been infested by fungi did Rome have military power The probability that a person has immunity to a particular disease is 0.6. Find the mean number who haveimmunity in samples of size 12. What are 2 characteristics that are basic parts of a literary analysis essay about a play? which substance has a natural pH?a. distilled waterb. milkc. groundwaterd. Rainwater 50 POINTS!You have $10,000 to invest, and three different funds from which to choose. The municipal bond fund has a 7% return, the local bank's CDs have an 8% return, and the highrisk account has an expected (hopedfor) 12% return. To minimize risk, you decide not to invest any more than $2,000 in the highrisk account. For tax reasons, you need to invest at least three times as much in the municipal bonds as in the bank CDs. Assuming the yearend yields are as expected, what are the optimal investment amounts? pls pls plsssss helppppp What classification of government distinguishes between presidential and parliamentary government? a) how much power a government has b) where power is located c) how power is distributed d) who has power