A construction company distributes its products by trucks loaded at its loading station. A backacter in conjunction with trucks are used for this purpose. If it was found out that on an average of 12 trucks per hour arrived and the average loading time was 3 minutes for each truck. A truck must queue until it is loaded. The backacter’s daily all-in rate is GH¢ 1000 and that of the truck is GH¢ 400.
a) Compute the operating characteristics: L, Lq, W, Wq, and P.

b) The company is considering replacing the backacter with a bigger one which will have an average service rate of 1.5 minutes to serve trucks waiting to have their schedules improved. As a manager, would you recommend the new backacter if the daily all-in rate is GH¢ 1300.

c) The site management is considering whether to deploy an extra backwater to assist the existing one. The daily all-in-rate and efficiency of the new backwater is assumed to be the same as that of the existing backwater. Should the additional backwater be deployed?

Answers

Answer 1

Answer:

a) [tex]L = 1.5[/tex]

[tex]L_q = 0.9[/tex]

[tex]W = \dfrac{1 }{8 } \, hour[/tex]

[tex]W_q = \dfrac{3}{40 } \, hour[/tex]

[tex]P = \dfrac{3}{5 }[/tex]

b) The new backacter should be recommended

c) The additional backacter should not be deployed

Explanation:

a) The required parameters are;

L = The number of customers available

[tex]L = \dfrac{\lambda }{\mu -\lambda }[/tex]

μ = Service rate

[tex]L_q[/tex] = The number of customers waiting in line

[tex]L_q = p\times L[/tex]

W = The time spent waiting including being served

[tex]W = \dfrac{1 }{\mu -\lambda }[/tex]

[tex]W_q[/tex] = The time spent waiting in line

[tex]W_q = P \times W[/tex]

P = The system utilization

[tex]P = \dfrac{\lambda }{\mu }[/tex]

From the information given;

λ = 12 trucks/hour

μ = 3 min/truck = 60/3 truck/hour = 20 truck/hour

Plugging in the above values, we have;

[tex]L = \dfrac{12 }{20 -12 } = \dfrac{12 }{8 } = 1.5[/tex]

[tex]P = \dfrac{12 }{20 } = \dfrac{3}{5 }[/tex]

[tex]L_q = \dfrac{3}{5 } \times \dfrac{3}{2 } = \dfrac{9}{10 } = 0.9[/tex]

[tex]W = \dfrac{1 }{20 -12 } = \dfrac{1 }{8 } \ hour[/tex]

[tex]W_q = \dfrac{3}{5 } \times \dfrac{1}{8 } = \dfrac{3}{40 } \, hour[/tex]

(b) The service rate with the new backacter = 1.5 minutes/truck which is thus;

μ = 60/1.5 trucks/hour = 40 trucks/hour

[tex]P = \dfrac{12 }{40 } = \dfrac{3}{10}[/tex]

[tex]W = \dfrac{1 }{40 -12 } = \dfrac{1 }{38 } \, hour[/tex]

[tex]W_q = \dfrac{3}{10 } \times \dfrac{1}{38 } = \dfrac{3}{380 } \, hour[/tex]

λ = 12 trucks/hour

Total cost = [tex]mC_s + \lambda WC_w[/tex]

m = 1

[tex]C_s[/tex] = GH¢ = 1300

[tex]C_w[/tex] = 400

Total cost with the old backacter is given as follows;

[tex]1 \times 1000 + 12 \times \dfrac{1}{8} \times 400 = \$ 1,600.00[/tex]

Total cost with the new backacter is given as follows;

[tex]1 \times 1300 + 12 \times \dfrac{1}{38} \times 400 = \$ 1,426.32[/tex]

The new backacter will reduce the total costs, therefore, the new backacter is recommended.

c)

Here μ = 3 min/ 2 trucks = 2×60/3 truck/hour = 40 truck/hour

[tex]\therefore W = \dfrac{1 }{40 -12 } = \dfrac{1 }{38 } \, hour[/tex]

Total cost with the one backacter is given as follows;

[tex]1 \times 1000 + 12 \times \dfrac{1}{8} \times 400 = \$ 1,600.00[/tex]

Total cost with two backacters is given as follows;

[tex]2 \times 1000 + 12 \times \dfrac{1}{38} \times 400 = \$ 2,126.32[/tex]

The additional backacter will increase the total costs, therefore, it should not be deployed.


Related Questions

The thrust F of a screw propeller is known to depend upon the diameter d,speed of advance \nu ,fluid density p, revolution per second N, and the coefficient of viscosity μ of the fluid. Determine the dimensions of each of the variables in terms of L,M,T,and find an expression for F in terms of these quantities

Answers

Answer:

screw thrust = ML[tex]T^{-2}[/tex] 

Explanation:

thrust of a screw propeller is given by the equation = p[tex]V^{2}[/tex][tex]D^{2}[/tex] x [tex]\frac{ND}{V}[/tex]Re

where,

D is diameter

V is the fluid velocity

p is the fluid density

N is the angular speed of the screw in revolution per second

Re is the Reynolds number which is equal to  puD/μ

where p is the fluid density

u is the fluid velocity, and

μ is the fluid viscosity = kg/m.s = M[tex]L^{-1}[/tex][tex]T^{-1}[/tex]

Reynolds number is dimensionless so it cancels out

The dimensions of the variables are shown below in MLT

diameter is m = L

speed is in m/s = L[tex]T^{-1}[/tex]

fluid density is in kg/[tex]m^{3}[/tex] = M[tex]L^{-3}[/tex]

N is in rad/s = L[tex]L^{-1}[/tex][tex]T^{-1}[/tex] =

If we substitute these dimensions in their respective places in the equation, we get

thrust = M[tex]L^{-3}[/tex][tex](LT^{-1}) ^{2}[/tex][tex]L^{2}[/tex][tex]\frac{T^{-1} L}{LT^{-1} }[/tex]

= M[tex]L^{-3}[/tex][tex]L^{2}[/tex][tex]T^{-2}[/tex]

screw thrust = ML[tex]T^{-2}[/tex] 

This is the dimension for a force which indicates that thrust is a type of force

If gear X turns clockwise at constant speed of 20 rpm. How does gear y turns?

Answers

Answer:

Gear Y would turn Counter-Clockwise do to the opposite force created from gear X.

                         

                          Hope this helped!  Have a great day!

A particular Table in a relational database contains 100,000 Data Records/rows, each of which Data Record/row requires 200 bytes. A select statement returns all Data Records/rows in the Table that satisfy an equality search on an attribute. Estimate the time in milliseconds to complete the query when each of the following Indexes on that attribute is used.
A. No Index (Heap File of Data Records)
B. A Static Hash Index (with no overflow buckets/Pages). Assume the cost of applying the hash function is H, negligible.

Answers

The correct question is;

A particular table in a relational database contains 100,000 rows, each of which requires

200 bytes of memory. Estimate the time in milliseconds to to insert a new row into the

table when each of the following indices on the related attribute is used. Assume a page

size of 4K bytes and a page access time of 20 ms.

a. No index (heap file)

b. A clustered, non-integrated B+ tree index, with no node splitting

required. Assume that each index entry occupies 100 bytes. Assume that the

index is 75% occupied and the actual data pages are 100% occupied. Assume

that all matching entries are in a single page.

Answer:

A) 20 ms

B) 120 ms

Explanation:

A) Append (at the end of file). Just one IO, i.e., 20 ms

B) Now, when we assume that each entry in the index occupies 100 bytes, then an index page can thus hold 40 entries. Due to the fact that the data file occupies 5000 pages, the leaf level of the tree must contain at least 5000/40 pages which is 125 pages.

So, the number of levels in the tree (assuming page 75% occupancy in the

index) is (log_30 (125)) + 1 = 3. Now, if we assume that the index is clustered and not integrated with the data file and all matching entries are in a single

page, then 4 I/O operations and 80ms are required to retrieve all matching

records. Two additional I/O operations are required to update the leaf page

of the index and the data page. Hence, the time to do the insertion is

120ms.

A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is important to find its terminal downward velocity. If it has a density of 1200 kg/m3, its terminal downward velocity (cm) is: (assume the drag coefficient is 24/Re and the volume of a sphere is 4/3 pi R3)

Answers

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

Answer every question of this quiz
Please note: you can answer each question only once.
Which number shows the intake valve?
OK

Answers

I'd say number 4, number 3 looks like an exhaust valve

A 1000 mm wide steel sheet made of C35 is normalized by cold rolling 10 mm thick
deformed to 5 mm. The rollers, 600 mm in diameter, run at a peripheral speed of 0.12 m/s.
The deformation efficiency is 55%.
Find out:
a) the roller force
b) the roller torque
c) the performance on the pair of rollers.

Answers

Answer:

a. 20.265 MN

b. 0.555 MNm

c. 403.44 KW

Explanation:

Given:-

- The width ( w ) = 1000 mm

- Original thickness ( to ) = 10 mm

- Final thickness ( t ) = 5 mm

- The radius of the rollers ( R ) = 600 mm

- The peripheral speed of the roller ( v ) = 0.12

- Deformation efficiency ( ε ) = 55%

Find:-

a) the roller force ( F )

b) the roller torque ( T )

c) the performance on the pair of rollers. ( P )

Solution:-

- The process of flat rolling entails a pair of compressive forces ( F ) exerted by the rollers on the steel sheet that permanently deforms.

- The permanent deformation of sheet metal is seen as reduced thickness.

- We will assume that the compressive force ( F ) acts normal to the point of contact between rollers and metal sheet.

- The roll force ( F ) is defined as:

                                 [tex]F =L*w*Y_a_v_g[/tex]

Where,

                     L: The projected length of strip under compression

                     Y_avg: The yielding stress of the material = 370 MPa

- The projected length of strip under compression is approximated by the following relation:

                               [tex]L = \sqrt{R*( t_o - t_f )} \\\\L = \sqrt{0.6*( 0.01 - 0.005 )} \\\\L = 0.05477 m[/tex]

- The Roll force ( F ) can be determined as follows:

                            [tex]F = (0.05477)*(1 )*(370*10^6 )\\\\F = 20.265 MN[/tex]

- The roll torque ( T ) is given by the following relation as follows:

                               [tex]T = \frac{L}{2} * F\\\\T = \frac{0.05477}{2} * 20.265\\\\T = 0.555 MNm[/tex]

- The rotational speed of the rollers ( N ) is determined by the following procedure:

                               [tex]f = \frac{v}{2\pi* R} = \frac{0.12}{2*\pi 0.6} = 0.03181818 \frac{rev}{s} \\\\N = f*60 = 1.9090 rpm[/tex]

- The power consumed by the pair of rollers ( P ) is given by:

                              [tex]P = \frac{2\pi * F * L * N}{e*60,000} KW \\\\P = \frac{2\pi * ( 20.265*10^6) * (0.05477) * (1.90909 ) }{60,000*0.55} KW\\\\P = 403.44 KW[/tex]

A flashed steam geothermal power plant is located where underground hot water is available as saturated liquid at 700 kPa. The well head pressure is 600 kPa. The
flashed steam enters a turbine at 500 kPa and expands to 15 kPa, when it is condensed. The flow rate from the well is 29.6 kg/s. determine the power produced in
kW.

Answers

Answer:

The power produced by the turbine is 74655.936 kW.

Explanation:

A turbine is a device that operates at steady-state. Let suppose that turbine does not have heat interactions with surroundings, as well as changes in potential and kinetic energies are neglictible. Power output can be determined by First Law of Thermodynamics:

[tex]-\dot W_{out} + \dot m \cdot (h_{in}-h_{out}) = 0[/tex]

[tex]\dot W_{out} = \dot m\cdot (h_{in}-h_{out})[/tex]

Let suppose that water enters as saturated vapor and exits as saturated liquid. Specific enthalpies are, respectively:

[tex]h_{in} = 2748.1\,\frac{kJ}{kg}[/tex]

[tex]h_{out} = 225.94\,\frac{kJ}{kg}[/tex]

The power produce by the turbine is:

[tex]\dot W_{in} = \left(29.6\,\frac{kg}{s} \right)\cdot \left(2748.1\,\frac{kJ}{kg} - 225.94\,\frac{kJ}{kg} \right)[/tex]

[tex]\dot W_{in} = 74655.936\,kW[/tex]

A multi-plate clutch is to transmit 12 kW at 1500 rev/min. The inner and outer radii for the plates are to be 50 mm and 100 mm respectively. The maximum axial spring force is restricted to lkN. Calculate the necessary number of pairs of surfaces if ll = 0-35 assuming constant ‘vyear. What will be the necessary axial force?

Answers

Answer:

The uniform pressure for the necessary axial force  is  W = 945 N

The uniform wear for the necessary axial force is  W = 970.15 N

Explanation:

Solution

Given that:

r₁ = 0.1 m

r₂ = 0.05m

μ = 0.35

p = 12 N or kW

N = 1500 rpm

W = 1000 N

The angular velocity is denoted as  ω= 2πN/60

Here,

ω = 2π *1500/60 = 157.07 rad/s

Now, the power transferred becomes

P = Tω this is the equation (1)

Thus

12kW = T * 157.07 rad/s

T = 76.4 N.m

Now, when we look at the uniform condition, we have what is called the torque that is frictional which acts at the frictional surface of the clutch dented as :

T = nμW R this is the equation (2)

The frictional surface of the mean radius is denoted by

R =2/3 [(r₁)³ - (r₂)³/(r₁)² - (r₂)²]

=[(0.1)³ - (0.05)³/[(0.1)² - (0.05)²]

R is =0.077 m

Now, we replace this values and put them into the equation (2)

It gives us this, 76. 4 N.m = n * 0.35* 1000 N * 0.077 m

n = 2.809 = 3

The number of pair surfaces is = 3

Secondly, we determine the uniform wear.

So, the mean radius is denoted as follows:

R = r₁ + r₂/ 2

=0.1 + 0.05/2

=0.075 m

Now, we replace the values and put it into the equation (2) formula

76. 4 N.m = n *0.35* 1000 N * 0.075 m

n= 2.91 = 3

Again, the number of pair surfaces = 3

However, for the uniform pressure with regards to the number of clutch plates is 3 we can derive the necessary axial force from the equation (2)

76. 4 N.m = 3 * 0.35 * W *0.077 m

W = 945 N

Also, for the uniform wear with regards to the number of clutch plates is 3 we can derive the necessary axial force from the equation (2)

76. 4 N.m = 3 * 0.35 * W *0.075 m

W = 970. 15 N

To find the reactance XLXLX_L of an inductor, imagine that a current I(t)=I0sin(ωt)I(t)=I0sin⁡(ωt) , is flowing through the inductor. What is the voltage V(t)V(t)V(t) across this inductor?

Answers

Answer:

V(t) = XLI₀sin(π/2 - ωt)

Explanation:

According to Maxwell's equation which is expressed as;

V(t) = dФ/dt ........(1)

Magnetic flux Ф can also be expressed as;

Ф = LI(t)

Where

L = inductance of the inductor

I = current in Ampere

We can therefore Express Maxwell equation as:

V(t) = dLI(t)/dt ....... (2)

Since the inductance is constant then voltage remains

V(t) = LdI(t)/dt

In an AC circuit, the current is time varying and it is given in the form of

I(t) = I₀sin(ωt)

Substitutes the current I(t) into equation (2)

Then the voltage across inductor will be expressed as

V(t) = Ld(I₀sin(ωt))/dt

V(t) = LI₀ωcos(ωt)

Where cos(ωt) = sin(π/2 - ωt)

Then

V(t) = ωLI₀sin(π/2 - ωt) .....(3)

Because the voltage and current are out of phase with the phase difference of π/2 or 90°

The inductive reactance XL = ωL

Substitute ωL for XL in equation (3)

Therefore, the voltage across inductor is can be expressed as;

V(t) = XLI₀sin(π/2 - ωt)

Other Questions
Consider the markets for head sets, smart phones, cellular telephone service, and cell phone applications. Assume the market for headsets is controlled by many firms selling similar products, smart phone manufacturers use advertising to differentiate their products, only a few firms control a large portion of the cellular telephone service market, and cell phone applications are produced by many firms selling differentiated products. Classify the market for each of the following mobile goods and services as either monopoly, oligopoly, monopolistic competition, or perfect competition. Monopoly Oligopoly Monopolistic Competition Perfect Competition Head sets Smart phones Cellular telephone service Cell phone applications If (2 3) is a zero of a quadratic polynomial then the other zero is __________. In the circle, m BC = 94. The diagram is not drawn to scale.What is BCP188944786 Your friend wants to buy a new television that is out of his budget; however, he discovers a local place where he can get the television and then make weekly payments. Based on what you learned in the lessons, is this a wise financial decision? Explain why or why not. Describe in your own words the interaction between Dante and the lady who comes to visit him in canto 2 crivez le participe pass de lire pour complter la phrase.Julie a a0 un livre de Balzac pendant son vol. A dilation is given by the transformation (x, y) - (.75x, 75y). What type of dilation is thisA -enlargementB- it is not a dilationC- reduction Mr. Holmes sure likes to play with Legos now that he is staying home these days. He was thinking that nuclear reactions were just like playing with lego pieces. Here are his three ideas why legos are like nuclear reactions.1. If he builds a project that is too big, it will fall apart on its own because the connections are not strong enough to hold the pieces together.2. Putting smaller lego pieces together to create bigger objects provides Mr. Holmes lots and lots of energy. He could keep doing this for a very long time.3. While it causes a mess, Mr. Holmes gains energy by taking large objects and smashing them into smaller objects. While this is fun, it only lasts a limited time, because the large objects to smash are pretty scarce.Which of the following reactions nuclear reactions is Mr. Holmes thinking of in this scenario?Question 21 options:1 Fission 2 Fusion 3-Radioactive Decay1 Radioactive Decay 2 Fission 3 Fusion1 Fusion 2 Radioactive Decay 3- Fission1 Radioactive Decay 2- Fusion 3 Fission Which source would be the best to base a hypothesis upon Answer is not b please help Which basic economic question determines how a society will produce goods and services?A.Who consumes the goods and services?B.How can available resources be used efficiently?OC.What goods and services are produced?D.What price should goods and services be sold at? The estimator Yis a random variable that varies with different random samples; it has a probability distribution function that represents its sampling distribution, and mean and variance. Using the properties on expected values and variances of linear functions of random variables and sum operators, show that: A. E(Y) = B. Var(Y) 2/N. What scenario could be modeled by the graph below? You are having a conversation with your younger sibling. He believes the moon produces its own light, similar to the sun. How would you explain to him the reason we are able to see the moon at night and why we see different phases of the moon. Solve for x. I WILL MARK BRAINLIEST. find the value of APD angle.Given that,ABCD is a square.AB =BPwill give the brainliest NEED HELP! Consider circle C with diameter DE.Which is the equation of circle C?A. (x 2)2 + (y + 1)2 = 185B. (x 2)2 + (y + 1)2 = 370C. (x 2)2 + (y + 1)2 = 740D. (x + 9)2 + (y 7)2 = 185E. (x + 9)2 + (y 7)2 = 740 1. Divide 6/13 by 6/12 A. 12/13B. 1/12C. 13/12D.916 The graph to the right is the uniform density function for a friend whoThe graph to the right is the uniform density function for a friend who is x minutes late. Find the probability that the friend is at least 21 minutes late. is x minutes late. Find the probability that the friend is at least 21 minutes late. Write the fraction as a percent. Round to the nearest tenth of a percent if necessary.17/40Plsss help !!