what is the unabbreviated electron configuration of oganesson

Answers

Answer 1

Answer: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6

Explanation:


Related Questions

1/2 of an oxygen atom can combine with 2/3 of a hydrogen atom true or false

Answers

The statement "1/2 of an oxygen atom can combine with 2/3 of a hydrogen atom" is false because Atoms are the basic building blocks of matter and cannot be divided into smaller parts without breaking down the atom's structure.

An oxygen atom is composed of 8 protons, 8 neutrons, and 8 electrons, and it is not possible to divide an oxygen atom into halves. Similarly, a hydrogen atom consists of 1 proton, 1 electron, and 0 or 1 neutron, and it cannot be divided into thirds.

When atoms combine to form molecules, they do so in specific ratios determined by their chemical properties.

In the case of oxygen and hydrogen, the most common combination is two hydrogen atoms and one oxygen atom, which combine to form a water molecule ([tex]H_2O[/tex]). This is because the outer electron shells of the oxygen atom and the hydrogen atoms can interact in a way that stabilizes the resulting molecule.

Therefore the given statement is false

For more such questions on Atoms, click on:

https://brainly.com/question/6258301

#SPJ11

Compare the mile traveled by light in one year to the distance across the United States (3 000 miles or


the circumference of Earth 25 000 miles).

Answers

The distance traveled by light in one year, also known as a light-year, is approximately 5.88 trillion miles (9.46 trillion kilometers).

To put the distance of a light-year into perspective, it is equivalent to traveling around the Earth's equator more than 236 times. In astronomical terms, a light-year is used to measure the distance between stars and galaxies. For example, the nearest star to our solar system, Proxima Centauri, is about 4.24 light-years away from Earth.

In comparison, the distance across the United States is much smaller. It would take around 50 million trips from one coast to the other to cover the same distance as a light-year. Similarly, the circumference of the Earth is significantly smaller, with light traveling around the planet's equator approximately 7.5 times in a single second.

To learn more about light follow the link:

brainly.com/question/1851642

#SPJ4

A sample of 0. 0400 mol potassium hydroxide, KOH was dissolved in water to yield 20. 0 mL of solution. What is the molarity of the solution?



0. 4M


250M


2. 0M


2. 00x 10-3M

Answers

The molarity of the solution is 2.0 M, option C is correct.

The molarity of a solution is defined as the number of moles of solute per liter of solution. In this problem, we are given the amount of solute, which is 0.0400 mol of potassium hydroxide, KOH, and the volume of the solution, which is 20.0 mL.

To find the molarity, we need to convert the volume to liters by dividing by 1000:

20.0 mL ÷ 1000 = 0.0200 L

Now we can use the formula for molarity:

Molarity = moles of solute ÷ liters of solution

Molarity = 0.0400 mol ÷ 0.0200 L = 2.00 M

Hence, option C is correct.

To learn more about molarity follow the link:

brainly.com/question/8732513

#SPJ4

The complete question is:

A sample of 0. 0400 mol potassium hydroxide, KOH was dissolved in water to yield 20. 0 mL of solution. What is the molarity of the solution?

A) 0.4M

B) 250M

C) 2.0M

D) 2.00x 10⁻³M

17. saccharin, an artificial sweetener that is 3000 times sweeter than sucrose, is composed of

45.90% carbon, 2.73% hydrogen, 26.23% oxygen, 7.65% nitrogen, and 17.49% sulfur. is the molecular formula of saccharin (a) c14h10o6n2s2, (b) csh,ons, (c) c&h9o2ns, and following orition: com 12.0%

(d) c;h5o3ns?​

Answers

Saccharin, an artificial sweetener that is 3000 times sweeter than sucrose, is composed of a) C₁₄H₁₀O₆N₂S₂.

45.90% carbon, 2.73% hydrogen, 26.23% oxygen, 7.65% nitrogen, and 17.49% sulfur. is the molecular formula of saccharin.

To determine the molecular formula of saccharin, we first need to calculate the empirical formula using the given percentages of each element.

Assuming we have 100 grams of saccharin, we have:

Carbon: 45.90 g / 12.01 g/mol = 3.82 mol

Hydrogen: 2.73 g / 1.01 g/mol = 2.70 mol

Oxygen: 26.23 g / 16.00 g/mol = 1.64 mol

Nitrogen: 7.65 g / 14.01 g/mol = 0.55 mol

Sulfur: 17.49 g / 32.07 g/mol = 0.55 mol

We can divide each value by the smallest one, which is 0.55 mol, to get the following ratios:

Carbon: 3.82 / 0.55 = 6.95

Hydrogen: 2.70 / 0.55 = 4.91

Oxygen: 1.64 / 0.55 = 2.98

Nitrogen: 0.55 / 0.55 = 1

Sulfur: 0.55 / 0.55 = 1

The resulting ratios are close to whole numbers, so we can assume the empirical formula to be C₇H₅NO₃S. To find the molecular formula, we need to determine the actual molecular mass of saccharin.

The empirical formula mass of C₇H₅NO₃S is approximately 183 g/mol. The molecular mass of saccharin is known to be around 452 g/mol, so we can calculate the ratio of the molecular mass to the empirical formula mass:

452 g/mol / 183 g/mol = 2.47

This means that the molecular formula is 2.47 times the empirical formula, or:

C₇H₅NO₃S * 2.47 = C₁₇H₁₃N₂O₅S

Therefore, the molecular formula of saccharin is (a) C₁₄H₁₀O₆N₂S₂. The other options (b) CSH,ONS, (c) C&H₉O₂NS, and (d) C;H₅O₃NS are not correct.

To know more about the saccharin refer here :

https://brainly.com/question/31703738#

#SPJ11

Elemental silicon is oxidized by o2 to give a compound which dissolves in molten na2co3. when this solution is treated with aqueous hydrochloric acid, a precipitate forms. what is the precipitate

Answers

Elemental silicon is oxidized by O₂ to give a compound which dissolves in molten Na₂CO₃. when this solution is treated with aqueous hydrochloric acid, a precipitate forms. silica gel is the precipitate.

The compound formed by the oxidation of elemental silicon with O₂ is silicon dioxide (SiO₂), which can dissolve in molten Na₂CO₃ to form sodium silicate (Na₂SiO₃).

When this solution is treated with aqueous hydrochloric acid (HCl), the sodium silicate reacts with the HCl to form a precipitate of silica gel (SiO₂·nH₂O). This reaction is known as the gelatinization of sodium silicate. The sodium chloride (NaCl) formed by the reaction remains in solution.

The silica gel precipitate is often used as a desiccant or drying agent due to its high surface area and ability to adsorb water molecules.

To know more about the silicon refer here :

https://brainly.com/question/14505564#

#SPJ11

I need help doing a bond line angle, and naming them. Along with their function groups.

Answers

You need add more Factors In the line two because The fractions is incorrect

wade could tell it was the night before trash pickup. The garbage can stank! What was it about summer that made the trash smell so bad, but the odor wasn't as bad during the winter months? construct an explanation that details the role particle energy plays in smell.

Answers

Answer:

Rameshwaram Gandhamadan mountain

Which salt solutions could be used to prepare a buffer solution?.

Answers

Buffer solutions are made by mixing a weak acid and its conjugate base or a weak base and its conjugate acid. The pH of a buffer solution remains relatively constant when small amounts of an acid or a base are added to it.

Therefore, salt solutions containing the conjugate acid-base pair of a weak acid or a weak base could be used to prepare a buffer solution.

For example, to prepare an acetate buffer solution, one could mix a solution of sodium acetate ([tex]NaOAc[/tex]) with acetic acid ([tex]HOAc[/tex]).

The [tex]OAc^-[/tex]anion in the sodium acetate solution acts as a weak base and reacts with any added[tex]H^+[/tex] ions to form[tex]HOAc[/tex], which acts as a weak acid and buffers the solution's pH. Similarly, the [tex]NH4^+[/tex] cation in ammonium chloride ([tex]NH4Cl[/tex]) can react with [tex]OH^-[/tex]ions to form [tex]NH3[/tex], which acts as a weak base and buffers the pH of the solution.

Therefore, salt solutions containing the conjugate acid-base pair of a weak acid or a weak base can be used to prepare buffer solutions.

To know more about Buffer solutions refer to-

https://brainly.com/question/24262133

#SPJ11

SEP Plan and Carry Out Investigations Suppose that you were a geologist trying to figure out how a long and narrow sea, such as the Red Sea, formed. What geologic features would you look for to determine whether the current shape of the sea is a result of seafloor spreading or ocean subduction? a​

Answers

To determine whether the current shape of the Red Sea is a result of seafloor spreading or ocean subduction, a geologist would look for evidence of faulting and volcanic activity.

If the Red Sea was formed by seafloor spreading, there would be evidence of a mid-oceanic ridge along the center of the sea. This would be characterized by a linear pattern of volcanic and seismic activity, with magnetic anomalies and a symmetrical pattern of rock age on either side of the ridge. On the other hand, if the Red Sea was formed by ocean subduction, there would be evidence of a subduction zone, characterized by a deep trench along the edge of the sea and a pattern of volcanic activity occurring inland from the trench.

Additionally, there may be evidence of compressional forces, such as folding or faulting, indicating that two tectonic plates are colliding. By analyzing these features, a geologist can determine whether the Red Sea was formed by seafloor spreading or ocean subduction.

To learn more about geologic features, here

https://brainly.com/question/28427699

#SPJ4

3. If 720. 0 g of steam at 400. 0 °C absorbs 800. 0 kJ of heat energy, what will be its increase in


temperature? (Cp of steam = 1. 7 J/g °C)

Answers

The increase in temperature of the steam if it absorbs 800 kJ of heat energy is 653.6°C

How to calculate increase in temperature?

The specific heat capacity is the amount of thermal energy required to raise the temperature of a system by one temperature unit. The increase in temperature of a metal can be calculated using the following expression;

Q = mc∆T

Where;

Q = quantity of heat absorbed or releasedm = massc = specific heat capacity∆T = change in temperature

800,000 = 720 × 1.7 × ∆T

800000 = 1,224∆T

∆T = 653.6°C

Learn more about change in temperature at: https://brainly.com/question/11477213

#SPJ1

How many magnesium ions are contained in 4.5 moles of magnesium phosphate?

Answers

8.13 x  10²⁴ magnesium ions in 4.5 moles of magnesium phosphate.

To determine the chemical formula for magnesium phosphate. Magnesium has a 2⁺ charge, and phosphate has a 3⁻ charge, so the chemical formula for magnesium phosphate is Mg₃(PO₄)₂.

Next, we need to use the coefficients in the formula to determine the number of magnesium ions in 4.5 moles of magnesium phosphate. There are 3 magnesium ions in one molecule of magnesium phosphate, so we can set up a proportion:

3 Mg ions / 1 Mg₃(PO₄)₂ molecule = x Mg ions / 4.5 moles Mg₃(PO₄)₂

Solving for x, we get:
x = 3 Mg ions / 1 Mg₃(PO₄)₂ molecule × 4.5 moles Mg₃(PO₄)₂
x = 13.5 moles Mg ions

Therefore, there are 13.5 moles of magnesium ions in 4.5 moles of magnesium phosphate. However, if we want to convert this to a more common unit, we can use Avogadro's number to convert moles to atoms or ions:

13.5 moles Mg ions × 6.022 x 10²³ions/mol = 8.13 x  10²⁴ Mg ions

Therefore, there are approximately 8.13 x 10²⁴ magnesium ions in 4.5 moles of magnesium phosphate.

To know more about Avogadro's number :

https://brainly.com/question/859564

#SPJ11

A gas occupies 37. 5 mL at 102. 3 kPa. At 27. 5 mL, what will the pressure be?

Answers

The pressure will be 139.92 kPa at a volume of 27.5 mL.

To answer this question, we will use Boyle's Law formula, which states that the product of the initial pressure (P1) and volume (V1) of a gas is equal to the product of the final pressure (P2) and volume (V2) when the temperature remains constant.


Step 1: Identify the initial pressure (P1), initial volume (V1), and final volume (V2).

P1 = 102.3 kPa
V1 = 37.5 mL
V2 = 27.5 mL

Step 2: Apply Boyle's Law formula, which is P1 * V1 = P2 * V2. We need to find the final pressure (P2).

102.3 kPa * 37.5 mL = P2 * 27.5 mL

Step 3: Solve for P2.

P2 = (102.3 kPa * 37.5 mL) / 27.5 mL

Step 4: Calculate the value of P2.

P2 ≈ 139.64 kPa

At 27.5 mL, the pressure of the gas will be approximately 139.64 kPa.

Learn more about pressure at https://brainly.com/question/28012687

#SPJ11

Ketone 1 gives two different bicyclic products depending on the base used: when treated with potassium tert-butoxide at room temperature, it produces ketone 2, while when treated with LDA at low temperatures and then heated, it produces ketone 3. Write arrow-pushing mechanisms for the formation of both 2and 3and explain why the reaction conditions favor each product

Answers

Ketone 1 undergoes different reactions depending on the base used.

When treated with potassium tert-butoxide at room temperature, it produces ketone 2 via an intramolecular aldol reaction.

On the other hand, when treated with LDA at low temperatures, it undergoes a kinetic enolate formation followed by intramolecular cyclization to give an intermediate, which upon heating, eliminates lithium and produces ketone 3. The reaction conditions favor each product due to the different reactivity of the bases.

Potassium tert-butoxide is a strong base and promotes a fast aldol reaction at room temperature, while LDA is a weaker base that requires low temperatures to form the kinetically favored enolate intermediate, which upon heating, undergoes lithium elimination to give ketone 3.

To know more about intramolecular aldol click on below link:

https://brainly.com/question/31744157#

#SPJ11

How many moles of n2 (g) are present in 1. 00 l of n2 (g) at 100. °c and 1 atm?


______ moles

Answers

There are 2.74 moles of N₂ (g) present in 1.00 L of N₂ (g) at 100°C and 1 atm.

The number of moles can be calculated using the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

First, we need to convert the temperature from Celsius to Kelvin by adding 273.15 K. Thus, T = 100°C + 273.15 = 373.15 K .We also need to convert the pressure from atm to Pa by multiplying by 101,325 Pa/atm. Thus, P = 1 atm × 101,325 Pa/atm = 101,325 Pa.

We can now solve for n:

n = PV/RT = (101,325 Pa × 1.00 L)/(0.08206 L⋅atm/mol⋅K × 373.15 K) = 2.74 mol N₂ (g)

Therefore, in a 1.00 L container filled with N₂ (g) at a temperature of 100°C and pressure of 1 atm, there are 2.74 moles of N₂ (g) present

To know more about moles, refer here:

https://brainly.com/question/30759206#

#SPJ11

How much 3. 0 M H2SO4 is needed to neutralize 50. ML of 1. 2 M AL(OH)3

Answers

The amount of H₂SO₄ needed is 30 mL, under the condition that the required amount is needed to neutralize 50. ML of 1. 2 M AL(OH)₃.

In order to solve this problem, we need to apply stoichiometry and the balanced chemical equation for the reaction between  H₂SO₄  and AL(OH)₃.

The derived balanced chemical equation for this reaction is

2AL(OH)₃ + 3H₂SO₄  → Al₂(SO₄)₃ + 6H₂O

Now regarding the equation, we can evaluate that 3 moles of H₂SO₄  are necessary to react with 2 moles of AL(OH)₃.

We can apply this information to calculate how much H₂SO₄   is needed to neutralize 50 mL of 1.2 M AL(OH)₃.

Step 1, we need to calculate how many moles of AL(OH)₃ are present in 50 mL of 1.2 M solution:

Molarity = moles of solute / liters of solution

1.2 M = moles of AL(OH)₃ / 0.050 L

moles of AL(OH)₃ = 0.060 moles

Now we can apply stoichiometry to calculate how many moles of H₂SO₄   are required

moles of H₂SO₄   = (0.060 moles AL(OH)₃ x (3 moles H₂SO₄   / 2 moles AL(OH)₃

moles of H₂SO₄   = 0.090 moles

Finally, we can evaluate how many milliliters of 3.0 M H₂SO₄   are required

Molarity = moles of solute / liters of solution

3.0 M = 0.090 moles / liters of solution

liters of solution = 0.030 L

We need to convert liters to milliliters:

0.030 L x (1000 mL / 1 L)

= 30 mL

Hence, 30 mL of 3.0 M H₂SO₄   are necessary to neutralize 50 mL of 1.2 M AL(OH)₃.

To learn more about stoichiometry

https://brainly.com/question/30820349

#SPJ4

6. How many moles are in 2. 65x10 22 atoms of carbon?


7. How many moles are in 1. 79x10 25 molecules of ammonia?

Answers

In problem 6, the number of atoms of carbon is 2.65 x 10²², which corresponds to 0.044 moles of carbon after dividing by Avogadro's number whereas In problem 7, the number of molecules of ammonia is 1.79 x 10²⁵, which is equivalent to 29.7 moles of ammonia after dividing by Avogadro's number.

In 6, the number of atoms of carbon given is 2.65 x 10²². To convert this to moles, we need to divide by Avogadro's number (6.02 x 10²³ atoms/mol).

Therefore, the number of moles of carbon is:

2.65 x 10²² atoms / 6.02 x 10²³ atoms/mol = 0.044 moles of carbon

In 7, the number of molecules of ammonia given is 1.79 x 10²⁵. To convert this to moles, we need to divide by Avogadro's number (6.02 x 10²³ molecules/mol).

Therefore, the number of moles of ammonia is:

1.79 x 10²⁵ molecules / 6.02 x 10²³ molecules/mol = 29.7 moles of ammonia.

To know more about the ammonia refer here :

https://brainly.com/question/31525313#

#SPJ11

a 10 kg computer accelerates at a rate of 5 m/s2. how much force was applied to the computer?

Answers

The force applied to the 10 kg computer was 50 Newtons.

What is computer ?

An electrical device with the capability to accept, store, process, and output data is known as a computer.

The following formula can be used to determine the force exerted on a 10 kilogram computer that is accelerating at a rate of 5 m/s2:

Force = mass x acceleration

Where

mass = 10 kg (given)acceleration = 5 m/s² (given)

Plugging in these values, we get:

Force = 10 kg x 5 m/s²

Force = 50 N

Therefore, the force applied to the 10 kg computer was 50 Newtons.

Learn more about computer here : brainly.com/question/21474169

#SPJ1

When 10 liters of a gas at 1 atm is compressed to 3 liters at constant temperature, what property of the gas changes?


O The number of moles of gas decreases.


The mass of the gas increases.


The pressure of the gas increases.


The size of the gas particles decreases.

Answers

The pressure of the gas increases.

When 10 liters of a gas at 1 atm is compressed to 3 liters at constant temperature, the property of the gas that changes is the pressure of the gas increases. This is due to the fact that the volume of the gas has decreased while the number of gas particles remains constant. As the particles are now confined to a smaller space, they collide more frequently with the walls of the container, resulting in an increase in pressure.

The number of moles of gas and the mass of the gas remain constant because the compression occurs at a constant temperature, indicating that there is no change in the amount of gas particles. The size of the gas particles does not change either, as this is a property of the gas molecules themselves and is not influenced by external factors like pressure or temperature.

In summary, when a gas is compressed at a constant temperature, the pressure of the gas increases due to the decrease in volume. This relationship is described by Boyle's Law, which states that the pressure and volume of a gas are inversely proportional to each other at a constant temperature.

Know more about Boyle's Law here:

https://brainly.com/question/30367133

#SPJ11

Determine the molar mass of choch,. provide an answer to two


decimal places.

Answers

The molar mass of [tex]CHOCH[/tex] is 64.05 g/mol, which means that one mole of [tex]CHOCH[/tex] has a mass of 64.05 grams.

The molar mass of a compound is the mass in grams of one mole of the substance. To calculate the molar mass of [tex]CHOCH[/tex], we need to determine the atomic masses of all the atoms in one molecule of the compound and add them together.

[tex]CHOCH[/tex] has one carbon (C) atom, three oxygen (O) atoms, and four hydrogen (H) atoms. The atomic mass of C is 12.01 g/mol, O is 16.00 g/mol, and H is 1.01 g/mol. Therefore, we can calculate the molar mass of [tex]CHOCH[/tex] as follows:

Molar mass = (1 x atomic mass of C) + (3 x atomic mass of O) + (4 x atomic mass of H)

Molar mass = (1 x 12.01) + (3 x 16.00) + (4 x 1.01)

Molar mass = 64.05 g/mol

Therefore, the molar mass of [tex]CHOCH[/tex] is 64.05 g/mol, which means that one mole of [tex]CHOCH[/tex] has a mass of 64.05 grams.

To know more about molar mass refer to-

https://brainly.com/question/22997914

#SPJ11

!!!!chem help 50 points only answer if you know how to calculate this!!!!
dalton’s law of partial pressures and the ideal gas law.

8. you add 5 grams of n2 and 20 grams of he2 into a sealed container that has a volume of 5l. the temperature of the container is 393.15k.

a. use dalton’s laws of partial pressures to explain how the n2 and he2 gasses contribute to the total pressure of the container. (3pt)

b. calculate the moles of n2 was put into the container. (0.5pt)

c. calculate the moles of he2 was put into the container. (0.5pt)

d. use the ideal gas law to calculate the partial pressure of n2 gas inside the container. (2pts)

e. use the ideal gas law to calculate the partial pressure of he2 gas inside the container. (2pts)

f. use dalton’s law of partial pressures to calculate the total pressure of gas inside the container. (1pt)

please ask if any further information is needed in order to answer these (-:

Answers

To answer the given questions, we will utilize Dalton's Law of Partial Pressures and the Ideal Gas Law. Let's go through each part step by step:

a. Dalton's Law of Partial Pressures states that in a mixture of gases, the total pressure exerted is equal to the sum of the partial pressures of each gas. In this case, we have two gases, N2 and He2, in the sealed container.

The contribution of N2 gas to the total pressure can be calculated by multiplying the mole fraction of N2 by the total pressure. Similarly, the contribution of He2 gas to the total pressure can be calculated by multiplying the mole fraction of He2 by the total pressure.

b. To calculate the moles of N2 gas, we need to use its molar mass. The molar mass of N2 is approximately 28 g/mol. We divide the mass of N2 (5 grams) by its molar mass to obtain the number of moles.

c. To calculate the moles of He2 gas, we need to use its molar mass. The molar mass of He2 is approximately 4 g/mol. We divide the mass of He2 (20 grams) by its molar mass to obtain the number of moles.

d. To calculate the partial pressure of N2 gas, we will use the Ideal Gas Law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Rearranging the formula, we can solve for P: P = (n * R * T) / V. Plug in the values of n (moles of N2 gas), R (ideal gas constant), T (temperature in Kelvin), and V (volume) to calculate the partial pressure of N2 gas.

e. To calculate the partial pressure of He2 gas, we use the same formula as in part d, but this time we plug in the moles of He2 gas and other known values to calculate the partial pressure.

f. To calculate the total pressure of the gas inside the container, we use Dalton's Law of Partial Pressures, which states that the total pressure is the sum of the partial pressures of each gas. Add the partial pressures of N2 gas and He2 gas to obtain the total pressure.

To learn more about mass, refer below:

https://brainly.com/question/19694949

#SPJ11

How many liters would a 20 liter sample of gas at STP occupy if the


pressure was changed to 20 atmospheres and the temperature was changed to


38°C?

Answers

A 20-liter sample of gas at STP would occupy 5.68 liters if the pressure was changed to 20 atm and the temperature was changed to 38°C.

To solve this problem, we can use combined gas law, which relates the pressure, volume, and temperature of a gas. The formula for the combined gas law is:

[tex](P_1 * V_1) / (T_1 * n_1) = (P_2 * V_2) / (T_2 * n_2)[/tex]

where P1 and P2 are the initial and final pressures of the gas [tex]V_1[/tex] and [tex]V_2[/tex] are the initial and final volumes of the gas.

At STP, the conditions are 1 atmosphere of pressure and 0°C (273 K) of temperature.

Therefore, we can use these values as our initial conditions [tex](P_1 = 1\ atm, T_1 = 273 K)[/tex] and solve for [tex]V_2[/tex], the final volume of the gas:

[tex](P_1 * V_1) / T_1 = (P_2 * V_2) / T_2\\V_2 = (P_1 * V_1 * T_2) / (P_2 * T_1)[/tex]

Substituting the given values, we get:

[tex]V_2 = (1 atm * 20 L * 311 K) / (20 atm * 273 K) \\V_2 = 5.68 L[/tex]

To know more about STP, here

brainly.com/question/24050436

#SPJ4

It's a beautiful sunny July day temperature is 22. 4°C and you are playing basketball. You are using a vessel that has a volume of 3. 1 L. Later that night, the temperature drops to 8. 5°C and you go out to play basketball again. What is the volume of the ball that evening in liters?

Answers

The volume of the vessel in the evening when the temperature drops to 8.5°C is approximately 2.64 L.

We can use the combined gas law to solve this problem, which relates the pressure, volume, and temperature of a gas. The formula is:

(P1 x V1)/T1 = (P2 x V2)/T2

where P is pressure, V is volume, and T is temperature.

Using the initial conditions, we have:

P1 = P2 (assuming atmospheric pressure remains constant)

V1 = 3.1 L

T1 = 22.4°C + 273.15

    = 295.55 K

Solving for V2, we get:

V2 = (P1 x V1 x T2)/(P2 x T1)

     = (1 x 3.1 x (8.5°C + 273.15))/(1 x 295.55)

      = 2.64 L

As a result, when the temperature lowers to 8.5°C in the evening, the volume of the vessel is roughly 2.64 L.

To know more about the Temperature, here

https://brainly.com/question/30029642

#SPJ4

Benzene at 20°C has a viscosity of 0. 000651 Pa. S. What shear stress is required to deform this fluid at a velocity gradient of 4900 s-1 ?

Answers

Viscosity is a measure of a fluid's resistance to deformation under shear stress. In this case, Benzene has a viscosity of 0.000651 Pa. S at a temperature of 20°C. To calculate the shear stress required to deform Benzene at a velocity gradient of 4900 s-1, we can use the formula: shear stress = viscosity x velocity gradient.

Plugging in the values given, we get:

Shear stress = 0.000651 Pa. S x 4900 s-1
Shear stress = 3.191 Pa

Therefore, a shear stress of 3.191 Pa is required to deform Benzene at a velocity gradient of 4900 s-1. This means that if a force greater than 3.191 Pa is applied to Benzene, it will flow or deform under shear stress.

It is important to note that the viscosity of a fluid can change with temperature, pressure, and other factors, which can affect the fluid's ability to flow or deform under shear stress.

To know more about deformation under shear stress refer here

https://brainly.com/question/27969322#

#SPJ11

the answer to this problem

Answers

Here, each of the elements below with the class to which it belongs.  

Lithium → Alkali metals

Uranium → Transition metals

What is an Alkali metals?

Alkali metals are a group of highly reactive chemical elements in the periodic table. These elements include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). Alkali metals have a single electron in their outermost shell, which makes them highly reactive and able to easily lose that electron to form a positive ion. They are typically soft, silvery-white metals that have low melting and boiling points, and are highly reactive with water and other substances. Alkali metals are important in various industrial applications, such as batteries, alloys, and chemical synthesis.

Krypton → Noble gases

Manganese → Transition metals

Fluorine → Halogens

Barium → Alkaline Earth

Most reactive metal → Alkali metals

Silicon → Metalloids

Groups 3-12 → Transition metals

Most reactive nonmetals → Halogens

Inert and unreactive → Noble gases

Has characteristics of metals and nonmetals → Metalloids

To know more about Metalloids, visit:

https://brainly.com/question/6422662

#SPJ1

A chemist determined that a sample contains 20g of hydrogen and 320g of oxygen is this sample water or hydrogen peroxide?

Answers

The sample containing 20g of hydrogen and 320g of oxygen is hydrogen peroxide.

To determine if the sample containing 20g of hydrogen and 320g of oxygen is water or hydrogen peroxide, we'll analyze the molar ratios of hydrogen and oxygen in each compound.

Find the moles of hydrogen and oxygen in the sample:
For hydrogen, the molar mass is 1g/mol. So, moles of hydrogen = 20g / 1g/mol = 20 moles.
For oxygen, the molar mass is 16g/mol. So, moles of oxygen = 320g / 16g/mol = 20 moles.

Calculate the molar ratio of hydrogen to oxygen:
Molar ratio = moles of hydrogen / moles of oxygen = 20 moles / 20 moles = 1:1.

Water (H₂O) has a molar ratio of 2:1 for hydrogen to oxygen, while hydrogen peroxide (H₂O₂) has a molar ratio of 1:1 for hydrogen to oxygen.

Thus, the sample containing 20g of hydrogen and 320g of oxygen is hydrogen peroxide, as its molar ratio of hydrogen to oxygen is 1:1, which matches the molar ratio found in hydrogen peroxide.

To learn more about molar ratio visit:

https://brainly.com/question/30632038

#SPJ11

A cylinder of Krypton has contains 17 L of Ar at 22. 8 atm and 112 degrees celsisus. How many moles are in the cylinder?​

Answers

The number of moles in a cylinder of Krypton can be calculated using the Ideal Gas Law, which states that the product of pressure, volume, and temperature divided by the gas constant should be equal to the number of moles of gas in the container.

Using the given values, we find that the number of moles in the cylinder is 1.61 moles. To calculate this, first convert the temperature to Kelvin (K) by adding 273.15 to the temperature in Celsius, giving us 385.95 K.

Then, the ideal gas law equation becomes (22.8 atm * 17 L) / (8.314 J/K*mol * 385.95 K) = 1.61 moles. Thus, the cylinder contains 1.61 moles of Ar.

Know more about Ideal gas law here

https://brainly.com/question/28257995#

#SPJ11

SN1 reactions usually proceed with: Group of answer choices complete inversion at the center undergoing substitution. Slightly more inversion than retention at the center undergoing substitution. Equal amounts of inversion and retention at the center undergoing substitution. Slightly more retention than inversion at the center undergoing substitution. Complete retention at the center undergoing substitution

Answers

SN1 reactions usually proceed with equal amounts of inversion and retention at the center undergoing substitution.

In SN1 (Substitution Nucleophilic Unimolecular) reactions, the stereochemistry of the reaction is not generally characterized by equal amounts of inversion and retention at the center undergoing substitution. Instead, SN1 reactions typically lead to racemization or a mixture of stereoisomers.

In an SN1 reaction, the reaction proceeds in two steps. First, the leaving group departs from the substrate, generating a carbocation intermediate. Then, the nucleophile attacks the carbocation, resulting in the formation of the substitution product.

The key factor determining the stereochemistry of SN1 reactions is the nature of the carbocation intermediate. Carbocations are planar and lack stereochemistry.

As a result, the nucleophile can approach the carbocation from either side, leading to the formation of a mixture of stereoisomers or racemization.

Therefore, SN1 reactions typically result in the formation of both inverted and retained products, along with the possibility of racemization. The specific distribution of stereoisomers will depend on factors such as the nature of the nucleophile, the leaving group, and the reaction conditions.

To learn more about retention, refer below:

https://brainly.com/question/29709076

#SPJ11

Determine the ph if 50.0 ml of 0.75 m hi solution is added to 0.027 l of a 0.05 m koh solution

Answers

The pH of the resulting solution is about 0.33.

To determine the pH of the resulting solution when 50.0 mL of 0.75 M HI solution is added to 0.027 L of a 0.05 M KOH solution, we first need to find the moles of each reactant and then determine the concentration of the remaining ions.

1. Calculate moles of HI:
Volume (L) = 50.0 mL × (1 L / 1000 mL) = 0.050 L
Moles of HI = Volume (L) × Molarity = 0.050 L × 0.75 M = 0.0375 mol

2. Calculate moles of KOH:
Moles of KOH = Volume (L) × Molarity = 0.027 L × 0.05 M = 0.00135 mol

3. Determine the limiting reactant and the amount of remaining ions:
Since HI is a strong acid and KOH is a strong base, they will react completely in a 1:1 ratio. KOH is the limiting reactant, and there will be a remaining amount of HI.

Moles of remaining HI = Moles of HI - Moles of KOH = 0.0375 mol - 0.00135 mol = 0.03615 mol

4. Calculate the concentration of remaining H+ ions:
Total volume of the solution = 0.050 L (HI) + 0.027 L (KOH) = 0.077 L
Concentration of H+ ions = Moles of remaining HI / Total volume = 0.03615 mol / 0.077 L = 0.469 M

5. Determine the pH of the solution:
pH = -log10([H+]) = -log10(0.469) ≈ 0.33

The pH of the resulting solution is approximately 0.33.

To learn more about concentration, refer below:

https://brainly.com/question/10725862

#SPJ11

Bailey got sick and heard that he should gargle salt water to help his throat. He adds 25g of salt(NaCl) to a cup with 250mL of water(H2O). What is the concentration of this salt water in mol/L? Sodium has atomic mass 22. 99g/mol and chlorine has atomic mass 35. 45g/mol

Answers

The concentration of the salt water solution is 1.71 mol/L.

When Bailey got sick, he was advised to gargle salt water to help ease the pain in his throat. To make the salt water solution, he added 25g of salt (NaCl) to a cup containing 250mL of water (H2O). Now we need to determine the concentration of this salt water solution in mol/L.

To do this, we first need to find the number of moles of NaCl in the solution. We can calculate this by dividing the mass of NaCl by its molar mass, which is the sum of the atomic masses of sodium and chlorine. The atomic mass of sodium is 22.99g/mol and that of chlorine is 35.45g/mol, so the molar mass of NaCl is 58.44g/mol.

Number of moles of NaCl = 25g ÷ 58.44g/mol = 0.427mol

Next, we need to find the volume of the solution in liters, which is 250mL ÷ 1000mL/L = 0.25L.

Finally, we can calculate the concentration of the salt water solution by dividing the number of moles of NaCl by the volume of the solution in liters.

Concentration of salt water solution = 0.427mol ÷ 0.25L = 1.71 mol/L

Therefore, the concentration of the salt water solution is 1.71 mol/L. This means that for every liter of the solution, there are 1.71 moles of NaCl present. It is important to note that this concentration is much higher than what is typically recommended for gargling salt water, which is usually a 0.9% (or 0.154 mol/L) solution.

To know more about salt water, visit:

https://brainly.com/question/5306491#

#SPJ11

The number of calories in 10 grams of sugar is an example of a(n) ___________________. intensive extensive unique chemical

Answers

The number of calories in 10 grams of sugar is an example of an intensive property. So the correct answer is 1.

Intensive properties are properties that do not depend on the amount or size of the sample being measured. In this case, the number of calories is a characteristic of sugar that remains constant regardless of the amount of sugar being measured. Other examples of intensive properties include density, boiling point, melting point, and color. On the other hand, extensive properties are properties that do depend on the amount or size of the sample being measured, such as mass, volume, and energy. Unique and chemical are not related to the concept of intensive or extensive properties. Correct Option 1.

To know more about Intensive properties, here

brainly.com/question/13733851

#SPJ4

--The complete Question is, Fill in the blanks.

The number of calories in 10 grams of sugar is an example of a(n) ___________________.

intensive propertyextensive propertyunique propertychemical property --
Other Questions
A prospector graphed the locations of gold vein and all of the gold dust strikes in the vicinity. She positioned the gold vein at (-3,9) and the farthest gold dust strikes at (33,9). If each unit on the graph represents 1 mile then how far away from the gold vein is the farthest gold dust strike? What is 7-12 problems. The image is attached. A random sample of 18 observations taken from a normally distributed population produced the following data:28. 4 27. 3 25. 5 25. 5 31. 1 23. 0 26. 3 24. 6 28. 437. 2 23. 9 28. 7 27. 9 25. 1 27. 2 25. 3 22. 6 22. 7What is the point estimate of ?Make a 99% confidence interval for . What is the margin of error of estimate for in part b? The people in the myth are happy when they have the same things, but is equality the same thing as fairness? can you think of any occasions or circumstances in your life or in history when people should have had more or less than others? jupiter and his mighty company end the golden age can someone help me answer #17 using square roots? Work out without a calculator.45120 if you pay $ for a 20-year zero coupon bond with a face value of $, what is your annual compound rate of return? Help What is the purpose of the theory of perspective in technical drawing? A. it enables artists to draw technical drawings much faster B. it enables artists to make authentic copies of technical drawings C. it permits artists to design objects keeping functionality in mind D. it enables three-dimensional objects to be presented on a flat surface A pendulum is observed to complete 23 full cycles in 58 seconds. use the definition of frequency to find the frequency. PLEASE HELP!! 416 g of Xenon-146 was placed in a container to decay, if there is now 13g of Xenon- 146 left, how long has the Xenon been decaying? (the half-life of ^ 146 Xe is 37 hours) Please enter your answer as with one decimal place and with no units. Suppose you have a bag of m&ms 4 green 6 yellow 7 purple 3 red. what is the probability you select a brown m&m Which sentence best states the central idea of the excerpt? A sense of adventure can overcome fear and hardship. Earth will be more beautiful after the collapse of human civilization. The sensations of time travel are unpleasant and should be avoided. Human civilization is likely to move through cycles of creation and destruction. The table below shows the percentage similarity in amino acids sequences from a homologous gene derived from five different species of mammals and compared to that of a homologous gene of a human.Depict the evolutionary relationships among all six species, including humans, using their evolutionary relatedness according to their percentage of gene similarity. A sphere has a radius of 12 cm. a cylinder has the same radius and has a height of 12 cm. what is the difference in their volumes in cubic cm? record your answer to the nearest hundredth. use 3.14 Test i alternative-response typedirections: read each statement carefully. write t if the statement is correct and fs if otherwise. write your answer onthe space provided before the number.1. freedom is the god-given power to be able to act of one's own accord; a person who is free no longer acts underthe influence of an outside force other than one's own will and reason.2. eternal happiness depends highly on the kind of life we live on earth.3. the beatitudes are the standards for how we ought to relate with every good on earth: to use all in view of oursalvation and to reject the call to abuse god's creation. in the trinity are unending life, joy, and communion.4. the life jesus followed while he was on earth was the life filled with the beatitudes.standards for christian living the richter earthquake magnitude scale is based on the total amount of energy released by the earthquake. true false A 30-kVA transformer has 100 turns on the primary and 10 turns on the secondary.(a) Find the rating of the secondary if the primary is rated 3 kV.(b) If the operating frequency is 60 Hz, calculate the flux in the core at no load.(c) If the transformer delivers full load at 0.6 pf lagging,(i) Calculate the primary and secondary winding currents,(ii) Calculate the power output,(iii) Calculate the load impedance on the secondary side and as referred to the primary side.(d) Draw and label the phasor diagram. Emily is a student in biology lab. She conduct several experiments to investigate properties of amylase, an enzyme which converts starch into glucose. Benedicts region is a blue colored chemical which changes colors according to the amount of glucose in a sample. Benedict regent remains blue in the presence of starch. Emily feel seven test tubes with an equal amount of amylase and water. Next she places each tube in a different water bath for 10 minutes. She adds an equal amount of starch to each tube and performs a Benedict test (1]2] Which row links both the photoelectric effect and electron diffraction to the properties ofwaves and particles?[1 mark]Photoelectric effect | Electron diffractiona Particle property Particle property8 | Wave property Wave propertyParticle property Wave property| Wave property Particle property how did thurgood marshal contribute to the civil rights movement