ACTIVITY 1: AGREE OR DISAGREE


Write AGREE, if you think the statement is correct and DISAGREE if otherwise


1. An RPE of 10 means that the activity is very light


2. Swimming and playing basketball are vigorous activities


3. Street and hip hip dances are active recreational activities


4. Proper execution of dance steps increases the risk of injuries


5. A normal nutritional status means that weight is proportional to the height


6. Physical inactivity and unhealthy diet are risk factors for heart disease.


7. Risk walking and dancing are activities which are moderate intensity


8. One can help the community by sharing his/her knowledge and skills in dancing


9. Surfing on the internet and playing computer games greatly improve one's fitness


10. A physically active person engages in 5-10 minutes of moderately vigorous physical activity three or more


times a week

Answers

Answer 1

1. DISAGREE: An RPE of 10 means the activity is extremely hard.
2. AGREE: Swimming and playing basketball are vigorous activities.
3. AGREE: Street and hip-hop dances are active recreational activities.
4. DISAGREE: Proper execution of dance steps reduces the risk of injuries.
5. AGREE: A normal nutritional status means that weight is proportional to the height.
6. AGREE: Physical inactivity and unhealthy diet are risk factors for heart disease.
7. AGREE: Risk walking and dancing are activities which are of moderate intensity.
8. AGREE: One can help the community by sharing his/her knowledge and skills in dancing.
9. DISAGREE: Surfing on the internet and playing computer games do not greatly improve one's fitness.
10. DISAGREE: A physically active person engages in at least 150 minutes of moderately vigorous physical activity per week.

Visit https://brainly.com/question/1133404 to know more about activities

#SPJ11


Related Questions

Which of the following would be the best way to find experimental evidence of the different types of materials that condensed as a function of distance from the sun during the period of accretion in the solar nebula?.

Answers

The best way to find experimental evidence of the different types of materials that condensed as a function of distance from the sun during the period of accretion in the solar nebula is through astronomical observations.

By observing the composition of planets and asteroids at different distances from the sun, scientists can determine the types of materials that condensed as a function of distance. For example, the inner planets are composed of denser materials than the outer planets, indicating that different materials condensed at different distances from the sun.

Additionally, by studying meteorites and comets, which are believed to be left over from the formation of the solar system, scientists can gain insight into the composition of materials that condensed at various distances from the sun. Finally, using spectroscopy to analyze the composition of dust in interstellar clouds can provide evidence of the types of materials that condensed at different distances from the sun in the solar nebula.

Know more about solar system here

https://brainly.com/question/12075871#

#SPJ11

the image below shows a photo taken with a built-in lens of a digital camera. the bottom photo is taken with the same camera, but with an additional wide-angle lens. which wave phenomenon best explains the distortion of the bottom image compared to the top? diffraction dispersion reflection polarization

Answers

The wave phenomenon that best explains the distortion of the bottom image compared to the top is distortion due to the optical effect of lens refraction.

When light passes through a lens, it undergoes refraction, causing it to bend and converge or diverge depending on the curvature of the lens surface. A wide-angle lens can cause more bending of light and wider coverage, resulting in a distorted image with a wider field of view. Diffraction is the bending of light waves around obstacles, while dispersion is the separation of light into its constituent colors. Reflection involves the bouncing of light off surfaces, and polarization is the alignment of light waves in a particular orientation.

To know more about wave phenomenon , here

brainly.com/question/15390698

#SPJ4

Why was it important that dr. Jeff use a large ball to represent the sun a marble to represent the earth and a bead to represent the moon in his model

Answers

It was important for Dr. Jeff to use a large ball to represent the sun because the sun is much larger than the earth and the moon. Similarly, using a marble to represent the earth and a bead to represent the moon accurately represents their relative sizes in comparison to the sun. This helps to provide a visual representation that accurately depicts the sizes of the celestial bodies in question, which is important when teaching and understanding astronomical concepts.

Visit https://brainly.com/question/12075871 to learn more about the Solar System

#SPJ11

A tuning fork has a 545 hz pitch. when a second fork is struck, beat notes occur
with a frequency of 6 hz. what are the two possible frequencies of the second fork?

Answers

The two possible frequencies of the second fork are 539 Hz and 551 Hz. To find the possible frequencies of the second fork, we can use the formula:

beat frequency = | frequency of fork 1 - frequency of fork 2 |

We know that the frequency of fork 1 is 545 Hz and the beat frequency is 6 Hz. So, we can set up two equations:

6 = |545 - frequency of fork 2|
6 = |frequency of fork 2 - 545|

To solve for the frequency of fork 2, we can isolate the absolute value and solve for both cases:

Case 1:
6 = 545 - frequency of fork 2
frequency of fork 2 = 539 Hz

Case 2:
6 = frequency of fork 2 - 545
frequency of fork 2 = 551 Hz

Therefore, the two possible frequencies of the second fork are 539 Hz and 551 Hz.

Know more about frequency here:

https://brainly.com/question/14316711

#SPJ11

which of the following travel at the same speed as light? check all that apply. which of the following travel at the same speed as light?check all that apply. x-rays. radar. microwaves. cell phone signals. radio waves. gamma rays. infrared radiation. ultrasonic waves.

Answers

The electromagnetic waves that travel at the same speed as light are x-rays, gamma rays, infrared radiation, radio waves, and microwaves.

The speed of light in a vacuum is a constant value, known as the speed of light, which is approximately 299,792,458 meters per second. All electromagnetic waves, including x-rays, gamma rays, infrared radiation, radio waves, and microwaves, travel at this speed in a vacuum.

Radar is an electromagnetic wave that is used for detecting and locating objects. It travels at a speed close to the speed of light but is not exactly the same. Ultrasonic waves, on the other hand, are sound waves that travel through a medium, such as air or water, and have a much lower speed than light.

Cell phone signals are a form of electromagnetic waves, but they do not travel at the same speed as light. Their speed is significantly lower and depends on various factors such as the distance from the transmitter, interference, and the type of carrier signal used.

In summary, only x-rays, gamma rays, infrared radiation, radio waves, and microwaves travel at the same speed as light, while radar, cell phone signals, and ultrasonic waves do not.

To learn more about speed click on,

https://brainly.com/question/31165460

#SPJ4

A student carries a 0. 5kg water balloon from the first floor to the fourth floor, a distance of 15m. If she drops it out the window, how much kinetic energy will it have when it reaches the first floor?

Answers

The water balloon will have 220.5 Joules of kinetic energy when it reaches the first floor.

To calculate the kinetic energy of the water balloon when it reaches the first floor, we need to consider the conservation of energy. As the balloon falls, potential energy is converted into kinetic energy.

The potential energy (PE) of an object at a certain height is given by the formula:

PE = m * g * h

Where m is the mass of the object, g is the acceleration due to gravity, and h is the height.

In this case, the height is the distance between the fourth and first floors, which is 15 meters.

The potential energy at the fourth floor is:

PE_initial = m * g * h_initial

The potential energy at the first floor is:

PE_final = m * g * h_final

Since energy is conserved, the potential energy lost by the balloon is converted into kinetic energy:

KE = PE_initial - PE_final

Substituting the given values:

m = 0.5 kg

g ≈ 9.8 m/s²

h_initial = 4 floors = 4 * 15 m = 60 m

h_final = 1 floor = 1 * 15 m = 15 m

PE_initial = 0.5 kg * 9.8 m/s² * 60 m

PE_final = 0.5 kg * 9.8 m/s² * 15 m

KE = PE_initial - PE_final

Now we can calculate the kinetic energy:

KE = (0.5 kg * 9.8 m/s² * 60 m) - (0.5 kg * 9.8 m/s² * 15 m)

Simplifying the expression:

KE = 0.5 kg * 9.8 m/s² * (60 m - 15 m)

KE = 0.5 kg * 9.8 m/s² * 45 m

KE = 220.5 Joules

To know more about kinetic energy refer here

https://brainly.com/question/999862#

#SPJ11

1. A boy moves on a skateboard at a constant velocity of 3 m-s-'. The


combined mass of the boy and the skateboard is 40 kg. He catches a bag of


flour of mass 5 kg that is thrown to him horizontally at 6 m-s-!. Determine


the velocity of the boy after catching the bag of flour. (2 m-s ' in his original


direction)

Answers

The velocity of the boy and skateboard after catching the bag of flour is 2.25 m/s in his original direction. We can use the conservation of momentum to solve this problem.

The initial momentum of the system (boy, skateboard, and flour) is:

p initial = (40 kg) x (3 m/s)

            = 120 kg·m/s

When the boy catches the bag of flour, there is no net external force on the system, so the total momentum remains constant.

Therefore, the final momentum of the system is also 120 kg·m/s. Let v be the final velocity of the boy and skateboard.

Then the momentum of the flour is:

p flour = (5 kg) x (6 m/s)

          = 30 kg·m/s

The total momentum of the boy and skateboard is:

p boy + skateboard = (40 kg) x (v)

So we can write the conservation of momentum equation as:

p initial = p boy + skateboard + p flour

Solving for v, we get:

v = (p initial - p flour) / (40 kg)

Plugging in the numbers, we get:

v = (120 kg·m/s - 30 kg·m/s) / (40 kg)

 = 2.25 m/s

Therefore, the velocity of the boy and skateboard after catching the bag of flour is 2.25 m/s in his original direction.

To know more about momentum refer here

brainly.com/question/12450698#

#SPJ11

A 16-bit periodic count-down timer uses a clock source of 2khz and clock divider of 2, choose proper options for
how much is the frequency of the clock that feeds the counter inside this timer? [ select ] ["1 khz", "1 ms", "2 khz", "0.5 ms"]
what is the largest load value for this timer? [ select ] ["2^16 - 1", "2^16", "2^16 + 1"]
based on the answer to part 2, approximately, how long is the longest period for this periodic timer? [ select ] ["65.536 s", "0.5 ms", "1 ms", "(2^16) s"]
assume the load value is set at 999 and no rollover has happened between events, e1 and e2. if the counter reading (the value inside the counter) for the two events, c1 and c2, are 550 and 200, how long has elapsed between the two events? [ select ] ["350 ms", "350 sys clock cycles"]
assume the load value is 9999. once an event, e1, happens, the light should turn on and stay on for 3 seconds. if the counter value when e1 happens is 2000 and we immediately turn on the light, what should be the counter value when we have to turn off the light (after 3 seconds)?

Answers

The frequency of the clock that feeds the counter inside this timer is calculated as 1 kHz.

The frequency of clock that feeds the counter inside this time

                     [tex]f_{t}[/tex] = clock source frequency / 2

                         =  fs / 2

                         =  2/ 2 = 1 kHz

                Time period = 1 / f

                                  = 1 / 1 h = 1 ms

for each count time gap = 1 ms

part 2 :

Because the counter has 16 bits, its counting range is from 0 to (2ⁿ - 1) for up counting

(2ⁿ - 1) to 0   for down counting

for 16 bit for down counting = (2 ¹⁶ - 1) to 0

The larger load value to start down counting = 2¹⁶ - 1

Part 3:

The longest period for  16 bit periodic counter = total count × time base

                       = 2¹⁶ × 1 ms

                       = 65, 536 × 1 ms = 65. 5365

Part 4 :

load value is 999

count value C₁ = 550 for event 1

count value C₂ = 200 for event 2

                 time elapsed       = (C₁ - C₂ )× time base

                                                 = ( 550 - 200) × 1 ms

                                                 = 350 ms

Part 5:

Assume load is 9999 for each cycle that the timer is loaded with before beginning the countdown, which began at = 2000 C

time elapsed = 3 s

total counts required = time elapsed / time base

                                    = 3 s / 1 ms = 3000

However, when the timer reaches zero, it becomes a down count timer and initiates the cycle with a load value of 9999.

Before restart it completes - 2001 including 0

after restart it requires - 999

current value = 9999 - 999

                      = 9000

Learn more about frequency of clock;

brainly.com/question/8895503

#SPJ4

I need help on this one question in science



This image of a tiny fraction of the night sky was taken through a powerful telescope. Many of the objects seen in the image are galaxies similar to the Milky Way.




Telescopes have taken many images like this one, but of different fractions of the night sky. What do these images suggest?



A.


Each galaxy contains an equal number of stars.


B.


The Milky Way is the largest galaxy in the Universe.


C.


There are no other galaxies in the Universe.


D.


There are many other galaxies in the Universe

Answers

The statement that there are no other galaxies in the Universe is completely untrue. Science has shown us that there are countless galaxies in the Universe, each one containing billions of stars, planets, and other celestial bodies. The sheer size of the Universe alone suggests that there must be more galaxies out there.

Our own galaxy, the Milky Way, is just one of many, and we can observe other galaxies through telescopes and other instruments. In fact, astronomers estimate that there may be as many as 2 trillion galaxies in the observable Universe alone.

These galaxies come in many shapes and sizes, and they are spread out across the vast expanse of the Universe. Some are spiral galaxies like the Milky Way, while others are elliptical or irregular in shape. They all contain massive black holes, which play a crucial role in shaping the structure and evolution of the galaxies themselves.

Understanding the presence of other galaxies in the Universe is crucial to our understanding of the origins and evolution of the cosmos. Through ongoing scientific study, we continue to learn more about the structure, dynamics, and properties of these galaxies, shedding new light on the mysteries of the Universe.

To know more about galaxies  refer here

https://brainly.com/question/31361315#

#SPJ11

Which of these typically have the largest orbit? Earth Mars Meteors Comets

Answers

Comets typically have the largest orbits among the options provided. Comets are icy bodies that originate from the outermost regions of our solar system and have highly elliptical orbits that can take them far away from the Sun. Here option D is the correct answer.

The size and shape of a comet's orbit are determined by its initial velocity, the gravitational pull of the planets and the Sun, and any interactions with other celestial bodies. These factors can cause a comet's orbit to vary widely, with some comets having orbits that extend far beyond the outermost planets of our solar system and take them many thousands of years to complete a single orbit.

In contrast, Earth and Mars have relatively circular orbits around the Sun, with periods of 365.24 and 687 Earth days, respectively. Meteors are typically small rocky or metallic bodies that travel through space and can enter Earth's atmosphere, but they do not have orbits of their own as they are typically remnants from the break-up of comets or asteroids.

Overall, comets are unique celestial bodies with highly eccentric orbits that can take them to the far reaches of our solar system, and studying their orbits can provide important insights into the formation and evolution of our solar system.

To learn more about Comets

https://brainly.com/question/12443607

#SPJ4

Complete question:

Which of these typically have the largest orbit?

A - Earth

B - Mars

C - Meteors

D - Comets

If you double the kinetic energy of a nonrelativistic particle, how does its de Broglie wavelength change? The wavelength Choose your answer here by a factor of Type your answer here [factor answer should be given to one decimal place (ex. 1. 5)]

Answers

The de Broglie wavelength of a particle is inversely proportional to its momentum, so if the particle's kinetic energy is doubled. This means that the de Broglie wavelength will be halved, so the factor answer is 0.5.

What is wavelength?

Wavelength is the distance between two successive points of a propagating wave which have the same amplitude and phase. Wavelengths are typically measured in meters, centimeters, or nanometers, depending on the type of wave. Wavelengths range from radio waves, which have the longest wavelength, to gamma rays, which have the shortest wavelength. Waves with different wavelengths have different properties like speed, frequency, and energy. Wavelength is an important factor in determining the behavior of a wave, such as its reflection, refraction, interference, and diffraction. Wavelength also determines the type of electromagnetic radiation a wave produces, such as visible light, ultraviolet radiation, or infrared radiation. Wavelength is a fundamental property of waves and is used to describe the properties of light, sound, and other forms of energy.

To learn more about wavelength

https://brainly.com/question/10728818

#SPJ4

Two ice skaters, starting from rest, hold onto the ends of a 10 m pole. A 40-kg player is at one end of the pole and a 60-kg player is at the other end. The players then start pulling themselves along the pole towards each other while sliding without friction on the ice. If the two skaters continue past each other after they meet, what distance will the 60-kg player have moved with respect to the ice when the skaters have exchanged positions with respect to each other?.

Answers

The 60-kg player moves 3 meters with respect to the ice when the skaters have exchanged positions with respect to each other.

We can begin by using conservation of momentum to find the speed of the center of mass of the system. Since the system is initially at rest, the total momentum is zero. After the players start pulling themselves along the pole towards each other, they will move towards the center of mass of the system, which will move in the opposite direction to conserve momentum.

We can find the position of the center of mass by using the fact that the system is symmetric. The center of mass must be at the midpoint of the pole, or 5 m from either end.

Let's first find the velocity of the center of mass of the system:

total mass = 40 kg + 60 kg = 100 kg

momentum before = 0

momentum after = total mass × velocity of center of mass

velocity of center of mass = momentum after / total mass

velocity of center of mass = 0 / 100 kg

velocity of center of mass = 0 m/s

Since the velocity of the center of mass is zero, we know that the center of mass will remain in the same position throughout the motion of the players.

Now, let's consider the motion of the players. They will move towards each other with equal and opposite speeds, until they meet at the center of the pole. At this point, the 60-kg player will be moving in the direction of the 40-kg player with the same speed that the 40-kg player was initially moving.

Let's call the distance that the 60-kg player moves d. Then the distance that the 40-kg player moves is 10 m - d.

We can set up an equation to conserve momentum in the horizontal direction:

momentum before = momentum after

(40 kg)×(0 m/s) + (60 kg)×(0 m/s) = (40 kg)×(v) + (60 kg)×(-v)

where v is the speed of the players after they start moving towards each other. The negative sign in front of the 60-kg player's velocity indicates that the player is moving in the opposite direction to the 40-kg player.

Simplifying this equation, we get:

0 = 20 kg × v

v = 0 m/s

This means that the players come to a stop at the center of the pole.

Now we can find the distance that the 60-kg player moves, d:

d / 5 m = 60 kg / 100 kg

d = 3 m

To know more about momentum refer here

https://brainly.com/question/17166755#

#SPJ11

a single-turn current loop, carrying a current of 4.00 a, is in the shape of a right triangle with sides 50.0, 120, and 130 cm. the loop is in a uniform magnetic field of magnitude 75.0 mt whose direc- tion is parallel to the current in the 130 cm side of the loop. what is the magnitude of the magnetic force on (a) the 130 cm side, (b) the 50.0 cm side, and (c) the 120 cm side? (d) what is the magnitude of the net force on the loop?

Answers

The force on the 130 cm side is parallel to this combined force, the magnitude of the net force on the loop is 659.0 mN.

To solve this problem, we can use the formula for the magnetic force on a current-carrying wire in a magnetic field: F = I * L * B * sin(theta), where F is the force, I is the current, L is the length of the wire, B is the magnetic field strength, and theta is the angle between the wire and the magnetic field.

a) For the 130 cm side, the angle between the wire and the magnetic field is 0 degrees (since they are parallel), so sin(theta) = 0. Thus, the force on this side is F = I * L * B = 4.00 A * 1.30 m * 75.0 mT = 390.0 mN.

b) For the 50.0 cm side, the angle between the wire and the magnetic field is 90 degrees (since they are perpendicular), so sin(theta) = 1. Thus, the force on this side is F = I * L * B * sin(theta) = 4.00 A * 0.50 m * 75.0 mT * 1 = 150.0 mN.

c) For the 120 cm side, we can use the Pythagorean theorem to find that the angle between the wire and the magnetic field is approximately 36.9 degrees. Thus, sin(theta) = sin(36.9) = 0.6. The force on this side is F = I * L * B * sin(theta) = 4.00 A * 1.20 m * 75.0 mT * 0.6 = 216.0 mN.

d) To find the net force on the loop, we need to add up the forces on each side using vector addition. Since the forces on the 50.0 cm and 120 cm sides are perpendicular to each other, we can use the Pythagorean theorem to find their combined magnitude: sqrt((150.0 mN)^2 + (216.0 mN)^2) = 269.0 mN.

Since the forces on either side of the 130 cm are parallel to one another, we may add them:

269.0 mN + 390.0 mN = 659.0 mN.

The net force acting on the loop is 659.0 mN in size as a result.

To learn more about : magnitude

https://brainly.com/question/24468862

#SPJ11

A 66-kg skier speeds down a trail, as shown in (Figure 1). The surface is smooth and inclined at an angle of 22 ∘ with the horizontal.

A)Complete the free-body diagram by adding the forces that act on the skier.
Draw the vectors with their tails at the black dot.

B)Determine the normal force acting on the skier. Express your answer in newtons.

Answers

(a) The free body diagram consist of three forces, normal force, weight of skier, and force of friction.

(b) The normal force acting on the skier is approximately 600 N.

What are the forces acting on the skier?

The forces that act on the skier are:

Gravitational force or weight (W) acting vertically downward with a magnitude of W = mg.Normal force (N) acting perpendicular to the surface of the slope, with a magnitude equal to the component of the gravitational force perpendicular to the slope.Frictional force (F) acting parallel to the surface of the slope, opposing the motion of the skier.

B) To determine the normal force acting on the skier, we need to find the component of the gravitational force perpendicular to the slope. This can be calculated using trigonometry:

N = mg cos(θ)

where;

θ is the angle of inclination of the slope with respect to the horizontal.

Substituting the given values, we get:

N = (66 kg) x (9.8 m/s^2) x cos(22°)

N ≈ 600 N

Learn more about normal force here: https://brainly.com/question/14486416

#SPJ1

If your core temperature becomes colder, it is more difficult for oxygen to dissociate from hemoglobin at any po2.

Answers

When the core temperature of the body decreases, the metabolic rate also decreases, leading to less production of carbon dioxide.

This results in a decrease in the partial pressure of CO2 in the blood, which leads to an increase in blood pH.

A higher pH means that the blood becomes more alkaline, which makes it more difficult for oxygen to dissociate from hemoglobin.

The reason for this is that oxygen binds to hemoglobin more tightly at a higher pH, which is known as the Bohr effect.

Thus, as the core temperature becomes colder, the oxygen-hemoglobin dissociation curve shifts to the left, making it more difficult for oxygen to be released from hemoglobin and making it less available to the tissues that require it.

To know more about Bohr effect, refer here:

https://brainly.com/question/15970643#

#SPJ11

A sound source emits 20.0 w of acoustical power spread equally in all directions. the threshold of hearing is 1.0 × 10-12 w/m2. what is the sound intensity level 30.0 m from the source?

Answers

The sound intensity level 30.0 m from the source is approximately 92.5 dB.

To find the sound intensity level 30.0 m from the source, we need to follow these steps:

1. Calculate the sound intensity (I) at 30.0 m from the source:


Since the acoustical power (P) is spread equally in all directions, we can use the formula I = P / (4πr²),

where r is the distance from the source (30.0 m). So,

I = (20.0 W) / (4π × (30.0 m)²)

I = 20.0 / (4 × 3.14159 × 900)


I ≈ 1.77 × 10⁻³ W/m²

2. Calculate the sound intensity level (β) using the formula β = 10 × log10(I/I₀), where I₀ is the threshold of hearing (1.0 × 10⁻¹² W/m²). So,

β = 10 × log10((1.77 × 10⁻³ W/m²) / (1.0 × 10⁻¹² W/m²))

β ≈ 10 × log10(1.77 × 10⁹)


β ≈ 10 × (9.2477)
β ≈ 92.5 dB

The sound intensity level 30.0 m from the source is approximately 92.5 dB.

To know more about intensity level 30.0  refer here

brainly.com/question/11993021#

#SPJ11

Your camera's zoom lens has an adjustable focal length ranging from 80.0 to 205 mm. what is its range of powers (in d)

Answers

The range of powers for your camera's zoom lens is approximately 4.9 to 12.5 diopters. This means that the lens can focus on objects at different distances, providing flexibility and versatility when capturing images.

To find the range of powers of your camera's zoom lens, we need to first understand what the terms "focal length" and "power" mean.

Focal length (measured in millimeters) refers to the distance between the lens and the image sensor when the subject is in focus. In your case, the zoom lens has an adjustable focal length ranging from 80.0 to 205 mm.

Power (measured in diopters, or D) is a unit that describes the focusing ability of a lens. It is the inverse of the focal length (in meters). To find the power, we'll use the formula:

Power (D) = 1 / Focal Length (m)

Let's find the range of powers for your camera's zoom lens:

1. Convert the focal lengths to meters: 80.0 mm = 0.080 m, 205 mm = 0.205 m
2. Calculate the power for the minimum focal length: Power (D) = 1 / 0.080 m ≈ 12.5 D
3. Calculate the power for the maximum focal length: Power (D) = 1 / 0.205 m ≈ 4.9 D

For more about camera's zoom lens:

https://brainly.com/question/23841317

#SPJ11

If the wavelength of an x-ray is
5.2 x 10^-11 m, what is its frequency?

Answers

The frequency of an x-ray with a wavelength of 5.2 x[tex]10^{11}[/tex] m is approximately 5.77 x [tex]10^{18}[/tex] Hz. The frequency (f) of an electromagnetic wave is related to its wavelength (λ) and speed (v) by the formula f = v/λ.

For x-rays, the speed of light is used, which is approximately 3 x [tex]10^{8}[/tex] m/s. Therefore, the frequency of an x-ray with a wavelength of 5.2 x [tex]10^{11}[/tex] m can be calculated as:

f = (3 x [tex]10^{8}[/tex] m/s) / (5.2 x [tex]10^{11}[/tex] m)

f ≈ 5.77 x [tex]10^{18}[/tex] Hz

Thus, the frequency of an x-ray with a wavelength of 5.2 x[tex]10^{11}[/tex] m is approximately 5.77 x [tex]10^{18}[/tex] Hz. This is an extremely high frequency, which is why x-rays are so powerful and can penetrate through dense materials like bone.

To know more about electromagnetic wave, refer here:

https://brainly.com/question/3101711#

#SPJ11

ASAP!! Can someone help me with this? I put the attachment below.

Answers

A coil set-up without an iron core, featuring thirty loops, functioned as the control in the experiments. This configuration served as a baseline to compare the outcomes all other setups contained within the experiment.

How to explain the information

It is essential that any testing environment deploys a control to create a standard of reference when assessing alterations made to the conditions of the experiment.

The inclusion of an iron core to the coiling design led to the most significant modifications being brought about for the strength of the electromagnet. These changes were evidence by the rise in paperclips collected when inserting an iron nucleus into both the thirty-loop and sixty-loop configurations.

Learn more about coil on

https://brainly.com/question/27605406

#SPJ1

What is the spring constant of this spring?

Answers

Answer: D 400 N/m

Explanation:

Use your data to predict what a 400g bag would weigh

Answers

The volume of the 400g bag of flour is 666.67 cm^3.

This question asks for the calculation of the volume of a 400g bag of flour with a density of 0.6 g/cm^3. The density of a material is defined as its mass per unit volume, and can be expressed mathematically as:

density = mass/volume.

Rearranging the equation to solve for volume, we get:

volume = mass/density.

Substituting the given values, we get:

Volume = 400 g / 0.6 g/cm^3

Solving for the volume, we get:

Volume = 666.67 cm^3
Volume = 400g / 0.6 g/cm^3, which simplifies to 666.67 cm^3.
Therefore, the volume of the 400g bag of flour is 666.67 cm^3.

To know more about volume, here

brainly.com/question/1578538

#SPJ4

--The complete Question is, If a 400g bag of flour has a density of 0.6 g/cm^3, what is its volume in cm^3? --

Explain how a balloon sticks to a wall.

What charge is the balloon?

What happens to the wall as you put the balloon near it? Why does this happen?

Include in your explanation the law of charges.

Be as detailed in your explanation as possible.

Answers

Answer:

We are assuming the balloon has been rubbed by a cloth, giving it extra negative charges.

After the balloon has been rubbed, it gains a negative charge because it gained some negative charges from the the cloth. This means there are more negative charges than positive ones to neutralize the effect, so the balloon gets a negative charge.

Due to the law of charges that states "Like charges repel each other; unlike charges attract," when the negatively charged balloon is brought near a wall, the wall's negative charges are repelled and pushed away from the balloon. Meanwhile, the positive charges in the wall are attracted to the balloon's negative charges. The strength of this attractive force is enough to keep the relatively light balloon attracted to the wall, which may sometimes keep it suspended in its place.

A crane in a marble quarry is mounted on the rock walls of the quarry and is supporting a 2000 kg slab of marble. The center of mass of the 900 kg boom is located one-third of the way from the pivot end of its 15-m length, and the cable supporting the boom is attached at 10. 0 m from the pivot end. What is the tension in the cable supporting the boom? g

Answers

A crane is lifting a 2000 kg marble slab in a quarry using a 15 m long boom that weighs 900 kg. The cable supporting the boom is attached 10.0 m from the pivot end and has a tension of 82184 N.

To find the tension in the cable supporting the boom, we can use the principle of torque equilibrium. This principle states that the sum of the torques acting on an object must be zero for the object to be in rotational equilibrium.

Here's a plan to solve the problem:

Hypothesis: The tension in the cable supporting the boom can be found using the principle of torque equilibrium.

Equipment/Techniques: We will need a calculator and knowledge of the formula for torque (torque = force x distance x sin(angle)).

Health and safety: This problem does not present any significant health and safety risks.

Data collection and analysis:

Quantities to be measured: We need to find the tension in the cable supporting the boom.

Number and range of measurements to be taken: We only need to calculate the tension in the cable once.

Equipment usage: We will use the formula for torque to calculate the tension in the cable.

Control variables: None.

Method for data collection and analysis:

Calculate the weight of the slab of marble:

[tex]W = mg = 2000\; kg \times 9.8 \;m/s^2 = 19600 N.[/tex]

Calculate the weight of the boom:

[tex]W = mg = 900 \;kg \times 9.8 \;m/s^2 = 8820 N.[/tex]

Calculate the torque due to the weight of the slab:

[tex]T1 = W1 \times d1 \times sin(\theta) = 19600 N \times 10 m \times sin(90) = 196000 Nm.[/tex]

Calculate the torque due to the weight of the boom:

[tex]T2 = W2 \times d2 \times sin(\theta) = 8820 N \times 5 m \times sin(60) = 24162 Nm.[/tex]

Calculate the torque due to the tension in the cable:

[tex]T3 = T \times d3 \times sin(\theta) = T \times 5 m \times sin(60) = 2.5T Nm.[/tex]

Apply the principle of torque equilibrium: T1 + T2 - T3 = 0.

Solving for T, we get T = (T1 + T2)/2.5 = (196000 Nm + 24162 Nm)/2.5 = 82184 N.

In conclusion, The tension in the cable supporting the boom is 82184 N.

To know more about tension refer here:

https://brainly.com/question/30033702#

#SPJ11

A puck slides on a frictionless table hitting a block. in which scenario does the puck exert the most force on the block?

Answers

The force exerted by the puck on the block depends on the rate of change of momentum during the collision.

To determine the scenario in which the puck exerts the most force on the block, we need to consider the principles of conservation of momentum.

The momentum of an object is defined as the product of its mass and velocity.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision, assuming no external forces are acting on the system.

Let's consider two scenarios:

Scenario 1: The puck approaches the block with a higher initial velocity.

Scenario 2: The puck approaches the block with a lower initial velocity.

In both scenarios, the mass of the puck and the block remains constant.

However, the difference lies in the initial velocity of the puck.

According to the conservation of momentum, the change in momentum of the puck must be equal and opposite to the change in momentum of the block.

If the initial momentum of the puck is greater in scenario 1 compared to scenario 2, the change in momentum will also be greater.

Since force is defined as the rate of change of momentum, a greater change in momentum implies a larger force.

Hence, in scenario 1 where the puck has a higher initial velocity, the puck will exert more force on the block during the collision.

To summarize, the puck exerts the most force on the block when it approaches the block with a higher initial velocity (scenario 1).

To know more about conservation of momentum refer here

https://brainly.com/question/24989124#

#SPJ11

What is the frequency of a light wave with a wavelength of 6. 0 × 10^–7 meter traveling through space? Please explain.

A) 5. 0 × 10^14 Hz

B) 5. 0 × 10^1 Hz

C) 2. 0 × 10^–15 Hz

D) 1. 8 × 10^14 Hz

Answers

The frequency of a light wave with a wavelength of 6.0 × 10^–7 meters traveling through space is 5.0 × 10^14 Hz so that the correct answer is option (A)

To calculate the frequency of a light wave, we can use the formula: frequency (f) = speed of light (c) / wavelength (λ). The speed of light in a vacuum is approximately 3.0 × 10^8 meters per second (m/s).

Given the wavelength of the light wave as 6.0 × 10^–7 meters, we can now determine the frequency.

Step 1: Write down the formula
f = c / λ

Step 2: Substitute the values
f = (3.0 × 10^8 m/s) / (6.0 × 10^–7 m)

Step 3: Calculate the frequency
f = 5.0 × 10^14 Hz

So, the frequency of the light wave is 5.0 × 10^14 Hz, which corresponds to option A.

Know more about frequency of a light wave click here:

https://brainly.com/question/3075536

#SPJ11

Robert and his younger brother Jake decide to go fishing in a nearby lake. Just before they cast off, they are both sitting at the back of the boat and the bow of the boat is touching the pier. Robert notices that they have left the fishing bait on the pier and asks Jake to go get the bait. Jake has a mass of 59. 5 kg and an arm reach of 50. 0 cm, Robert has a mass of 87. 5 kg, and the boat has a mass of 83. 0 kg and is 2. 70 m long. Determine the distance the boat moves away from the pier as Jake walks to the front of th

Answers

1. This problem involves the principle of conservation of momentum. Initially, the total momentum of the system is zero because they are all at rest.

When Jake starts walking toward the front of the boat, he exerts a force on the boat that causes it to move away from the pier.

To conserve momentum, the boat and Robert must move in the opposite direction to Jake's motion, so the total momentum of the system remains zero.

We can use the equation:

m1v1 + m2v2 = (m1 + m2)vf

where m1 and v1 are the mass and velocity of Jake and m2 and v2 are the mass and velocity of the boat and Robert before Jake starts walking. vf is the velocity of the boat and Robert after Jake reaches the front of the boat.

2. We can assume that Jake walks to the front of the boat in a straight line, which means that the boat moves in the opposite direction with the same speed.

We can also assume that the boat moves only a small distance compared to its length, so we can treat it as a point object.

Using the given values:

m1 = 59.5 kg

m2 = 87.5 kg + 83.0 kg = 170.5 kg

v1 = 0 m/s

v2 = 0 m/s

vf = -v1*m1/m2 = -0 m/s

Substituting these values into the equation and solving for vf, we get:

m1v1 + m2v2 = (m1 + m2)vf

0 + 0 = (59.5 kg + 170.5 kg)vf

vf = 0 m/s

This means that the boat and Robert do not move when Jake reaches the front of the boat. Therefore, the distance the boat moves away from the pier is zero.

To know more about momentum refer here

https://brainly.com/question/30677308#

#SPJ11

An iron Cub has each 15cm long at 20c. What will be :
1 the new surface of a face weather temperature rise to 80c
2 the volume of the same final temperature

Answers

a) The new surface area of one face will be 225.162 cm^2.

b) The volume of the iron cube at the final temperature of 80°C will be  3382.29 cm^3.

The thermal expansion of a solid material can be determined using the coefficient of linear expansion, which is a material property that relates the change in length to the change in temperature. For iron, the coefficient of linear expansion is approximately 1.2 x 10^-5 /°C.

a) To find the new surface area of a face when the temperature rises from 20°C to 80°C, we can use the formula:

ΔA = A_0 * α * ΔT

where ΔA is the change in surface area, A_0 is the initial surface area, α is the coefficient of linear expansion, and ΔT is the change in temperature.

For a cube with each side 15 cm long, the initial surface area of one face is 15 cm x 15 cm = 225 cm^2. The change in temperature is 80°C - 20°C = 60°C. Substituting these values and the coefficient of linear expansion for iron, we get:

ΔA = 225 cm^2 * 1.2 x 10^-5 /°C * 60°C = 0.162 cm^2

Therefore, the new surface area of one face will be 225 cm^2 + 0.162 cm^2 = 225.162 cm^2.

b) To find the volume of the iron cube at the final temperature of 80°C, we can use the formula:

ΔV = V₁ * β * ΔT

where ΔV is the change in volume, V₁ is the initial volume, β is the coefficient of volume expansion, and ΔT is the change in temperature.

For a cube with each side 15 cm long, the initial volume is 15 cm x 15 cm x 15 cm = 3375 cm^3. The coefficient of volume expansion for iron is approximately three times the coefficient of linear expansion, so we can use β = 3α.

Substituting these values and the change in temperature, we get:

ΔV = 3375 cm^3 * 3 * 1.2 x 10^-5 /°C * 60°C = 7.29 cm^3

Therefore, the volume of the iron cube at the final temperature of 80°C will be 3375 cm^3 + 7.29 cm^3 = 3382.29 cm^3.

To learn more about temperature click on,

https://brainly.com/question/12789820

#SPJ4

a light sensor is based on a photodiode that requires a minimum photon energy of 1.65 ev to create mobile electrons. part a what is the longest wavelength of electromagnetic radiation that the sensor can detect?

Answers

The light sensor based on a photodiode with a minimum photon energy of 1.65 eV can detect electromagnetic radiation with a maximum wavelength of approximately 2.51 x 10⁻⁷ meters, corresponding to the infrared region of the spectrum.

To determine the longest wavelength of electromagnetic radiation that the sensor can detect, we need to convert the minimum photon energy of 1.65 eV into joules. Once we have the energy value in joules, we can use the equation that relates energy (E) and wavelength (λ):

E = hc/λ

where:
E is the energy of the photon,
h is Planck's constant (6.626 x 10⁻³⁴ J·s),
c is the speed of light in a vacuum (3 x 10⁸ m/s),
λ is the wavelength of the photon.

First, let's convert the minimum photon energy of 1.65 eV to joules. The conversion factor is 1 eV = 1.6 x 10⁻¹⁹ J.

Energy (E) = 1.65 eV * (1.6 x 10⁻¹⁹ J/eV)
= 2.64 x 10⁻¹⁹ J

Now, we can rearrange the equation to solve for the wavelength (λ):

λ = hc/E

Substituting the known values:

λ = (6.626 x 10⁻³⁴ J·s * 3 x 10^8 m/s) / (2.64 x 10⁻¹⁹ J)
≈ 2.51 x 10⁻⁷ m

Therefore, the longest wavelength of electromagnetic radiation that the sensor can detect is approximately 2.51 x 10⁻⁷ meters, which corresponds to the infrared region of the electromagnetic spectrum.

To learn more about electromagnetic radiation  click:

https://brainly.com/question/29646884

#SPJ12

The microwave transmitters that we use have a frequency of about 10 ghz. What is the approximate wavelength?.

Answers

The approximate wavelength of a 10 GHz microwave transmitter is 3 centimeters.

The approximate wavelength of a microwave transmitter with a frequency of 10 GHz can be calculated using the formula:

wavelength = speed of light / frequency

where the speed of light is approximately 3.00 × 10^8 meters per second.

So, the wavelength of a 10 GHz microwave transmitter would be:

wavelength = 3.00 × 10^8 m/s / 10 × 10^9 Hz

wavelength = 0.03 meters or 3 centimeters

To know more about wavelength refer here

https://brainly.com/question/13533093#

#SPJ11

on page 1 you had to draw the direction the earth moved without gravity in position 1 and 2. what was different about the path the earth took when there was not any gravity? * 5 points the earth moved in a straight line and did not move around the sun the orbit of the earth was faster the earth moved around the sun but travelled in a straight line the orbit of the earth stayed the same when you increased the mass of the sun, what happened to the gravity force? * 5 points it increased it stayed the same it decreased when you increased the distances, what happened to the gravity force? * 5 points it decreased it increased it stayed the same when you decreased the distances, what happened to the gravity force? * 5 points it increased it decreased it stayed the same when you increased the gravity, what happened to orbital speed? * 5 points it stayed the same it decreased it increased what are the 2 factors that affect the force of gravity? * 5 points the speed and size (mass) of an object the shape of the orbit and the distance between the objects nothing can change gravity because it is a natural force the size (mass) and distance between the objects

Answers

Changes in mass, distance, and gravity affect the force of gravity and orbital speed; the force of gravity is directly related to the size (mass) and distance between objects.

Changes in mass and distance affect the force of gravity and orbital speed: increasing mass or decreasing distance increases the force of gravity and orbital speed, while decreasing mass or increasing distance decreases them. The force of gravity is directly proportional to the product of the masses and inversely proportional to the square of the distance between them. The two factors that affect the force of gravity are the size (mass) and distance between the objects.

To know more about gravity, here

brainly.com/question/13224265

#SPJ4

--The complete question is, What are the effects of changes in mass, distance, and gravity on the force of gravity and orbital speed? What is the relationship between the force of gravity and the size and distance of the objects?--

Other Questions
Can the following list represent a complete probability model? P(2)= 1/12 P(3) = 2/3 P(4) = 1/4 Binary operationsif a * b = a - 2b, evaluate5 * 2can someone help ? HELPPP SOMEBODY PLEASEEE WITH THIS MATHHHH Set up triple integrals in cylindrical coordinates that compute the volumes of the following regions (do not evaluate the integrals): a) the region A bounded by the sphere x2 + y2 + z2 12 and the paraboloid x2 + y2 + z = 0, b) the region B in the first octant bounded by the surfaces z = x2 and x2 + y2 + z = 1, and c) the region C inside both spheres x2 + y2 +(z 2)2 = 16 and x2 + y2 + 2 = 16 16. In the United States, pharmacy practice law is managed primarily at th level. A. Federal B. State C regional D. Corporate What's the solution? Who gets in the way of Artemidorus in his attempt to warn Caesar of the plot against him? The leaning tower of Pisa is approximately 179 ft in ""height"" and is approximately 16. 5 ft out of plumb. Find the angle at which it deviates from the vertical Which was not an effect of fur trading on the Midwest?A. Trading posts were set up where fur traders settled. B. People left the Midwest in search of furs. C. Native Americans settled at the forts to farm and sell crops. D. Communities and major cities grew around the forts The prism below is made of cubes which measure 14of an inch on one side. What is the volume?A 3D illustration view of a blank tabular with 5 rows and 2 columns.Note: Figure is not drawn to scale. A. 1532cubic in B. 52cubic in C. 30cubic in D. 152cubic in please help, due in an hour !! the central idea of the song of the cardinal last paragraph is ? I need to know how to solve this equation QuestionWhat is the scale factor for the similar figures below? You have 20.7 grams of water at -25.34 C. You want to warm it to 155.0 C. Use the information below to calculate how much heat this will require.Csolid = 2.09 J/(gC)Hfus = 333 J/gCvapor = 2.03 J/(gC)Hvap = 2260 J/g 2.suppose you have an alkaline buffer consisting of 0.20 m aqueous ammonia (nh3) and 0.10 m ammonium chloride (nh4cl). what is the ph of the solution? In the early 1700s, a small religious group know as the German Baptist Brethren left Europe to settle in the eastern part of Pennsylvania. The orginal group of 50 families grew to 58,000 people by the late 1800's. In 1882, a part of the group split off as a result of differences in accepting modern machinery and marriage outside of their group. This Old Order isolated themselves from the other group and other people. In the 1950's a study was done to compare the Old Order to the original West German population and the neighboring population. Blood samples were taken from people in all 3 areas and blood typing tests were preformed. What would be the most likely reason that the scientist did not test the other half of the German Brethren that adopted more modern ways?A. The groups' allele frequencies would most likely be affected through the marriage of others that were not part of the orginal group.B. The distance between the Old Order and the group they left was not far enough to cause any changes in allele frequencies.C. The Old Order did not have any genetic similariteis with the original group, so there was no need to test them.D. This group had allele frequencies that were not diverse enough for the study. Hygeia Health expects to sell 470 units of Product A and 380 units of Product B each day at an average price of $25 for Product A and $32 for Product B. The expected cost for Product A is 36% of its selling price and the expected cost for Product B is 65% of its selling price. Hygeia Health has no beginning inventory, but it wants to have a fourminusday supply of ending inventory for each product. Compute the budgeted cost of goods sold for the next (sevenminusday) week. (Round the answer to the nearest dollar. ) When general electric created an independent health care division and divested it in june 2018 by distributing to ge's stockholders new shares in the new business, the strategic action was termed The table describes the quadratic function p(x). x p(x) -4 24 -3 9 -20 -1 -3 0 2 0 What is the equation of p(x) in vertex form? Op(x) = 2(x - 1) - 3 p(x) = 2(x + 1) - 3 Op(x) = 3(x - 1) 3 p(x) = 3(x - 1) 3